Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; : e4320, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768562

ABSTRACT

Studies of community assembly typically focus on the effects of abiotic environmental filters and stabilizing competition on functional trait dispersion within single trophic levels. Predation is a well-known driver of community diversity and composition, yet the role of functionally diverse predator communities in filtering prey community traits has received less attention. We examined functionally diverse communities of predators (fishes) and prey (epifaunal crustaceans) in eelgrass (Zostera marina) beds in two northern California estuaries to evaluate the filtering effects of predator traits on community assembly and how filters acting on predators influence their ability to mediate prey community assembly. Fish traits related to bottom orientation were correlated with more clustered epifauna communities, and epifauna were generally overdispersed while fishes were clustered, suggesting prey may be pushed to disparate areas of trait space to avoid capture by benthic sit-and-wait predators. We also found correlations between the trait dispersions of predator and prey communities that strengthened after accounting for the effects of habitat filters on predator dispersion, suggesting that habitat filtering effects on predator species pools may hinder their ability to affect prey community assembly. Our results present compelling observational evidence that specific predator traits have measurable impacts on the community assembly of prey, inviting experimental tests of predator trait means on community assembly and explicit comparisons of how the relative effects of habitat filters and intraguild competition on predators impact their ability to affect prey community assembly. Integrating our understanding of traits at multiple trophic levels can help us better predict the impacts of community composition on food web dynamics as regional species pools shift with climate change and anthropogenic introductions.

2.
Proc Biol Sci ; 289(1969): 20211762, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193403

ABSTRACT

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.


Subject(s)
Predatory Behavior , Zosteraceae , Animals , Crustacea , Ecosystem , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...