Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 27(5): 668-675, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33404151

ABSTRACT

BACKGROUND: In vitro skin permeation experiments are highly relevant for pharmaceutical, cosmetic, agricultural developments, and regulatory evaluation. A key requirement is the skin barrier integrity, that is accompanied by an intact stratum corneum (SC) which implements high skin quality. A variety of integrity tests are currently available, for example, measurement of transepidermal water loss, monitoring the permeation of tritiated water and the measurement of transdermal electrical resistance (TER). MATERIALS AND METHODS: We aimed for a non-destructive examination of barrier integrity as quality control system, based on TER. Therefore, the in-house developed instrument SkinTER measures electrical resistance on excised human skin samples in a non-invasive and easy-to-use pattern. In this proof of concept study, we compared three human in vitro skin models with focus on their TER and permeation properties. The skin integrity was impaired to mimic conditions of skin during age, lifestyle (eg, shaving) or diseases (eg, obesity, psoriasis, and atopic dermatitis). The OECD permeation marker caffeine was correlated to the corresponding TER value. RESULTS: A correlation between both was obtained by having a Pearson coefficient of -0.830. Hereby, a minimum TER value for intact skin samples of ~1.77 kΩ*cm2 was suggested. Intact samples are significantly different (α = ≤0.05) to their impaired counterparts in flux and TER values. CONCLUSION: The new SkinTER instrument gives a quick and non-invasive feedback on skin quality before a permeation experiment.


Subject(s)
Skin Absorption , Skin , Administration, Cutaneous , Electric Impedance , Humans , Permeability , Quality Control , Skin/metabolism
2.
ALTEX ; 37(2): 275-286, 2020.
Article in English | MEDLINE | ID: mdl-32052853

ABSTRACT

The development of new orally inhaled drug products requires their demonstration of safety, which must be proven in animal experiments. New in vitro methods may replace, or at least reduce, these animal experiments, provided they are able to correctly predict safety or possible toxicity in humans. However, the challenge is to link in vitro data obtained in human cells to human in vivo data. We here present a new approach to the safety assessment of excipients (SAFE) for pulmonary drug delivery. The SAFE model is based on a dose response curve of 23 excipients tested on the human pulmonary epithelial cell lines A549 and Calu-3. The resulting in vitro IC50 values were correlated with the FDA-approved concentrations in pharmaceutical products for either pulmonary (if available) or parenteral administration. Setting a threshold of 0.1% (1 mg/mL) for either value yielded four safety classes and allowed to link IC50 data as measured in human cell cultures in vitro with the concentrations of the same compounds in FDA-approved drug products. The necessary in vitro data for novel excipients can be easily generated, and the SAFE approach allows putting them into context for eventual use in human pulmonary drug products. Excipients that are most likely not safe for use in humans can be excluded early on from further pharmaceutical development. The SAFE approach thus helps to avoid unnecessary animal experiments.


Subject(s)
Excipients/toxicity , Pharmaceutical Preparations/administration & dosage , Administration, Inhalation , Administration, Oral , Cell Line, Tumor , Humans , Inhibitory Concentration 50
3.
Altern Lab Anim ; 48(5-6): 252-267, 2020.
Article in English | MEDLINE | ID: mdl-33513307

ABSTRACT

The incidence of inflammatory lung diseases such as acute respiratory distress syndrome (ARDS) remains an important problem, particularly in the present time with the Covid-19 pandemic. However, an adequate in vitro test system to monitor the barrier function of the alveolar epithelium during inflammation and for assessing anti-inflammatory drugs is urgently needed. Therefore, we treated human Alveolar Epithelial Lentivirus-immortalised cells (hAELVi cells) with the pro-inflammatory cytokines TNF-α (25 ng/ml) and IFN-γ (30 ng/ml), in the presence or absence of hydrocortisone (HC). While TNF-α and IFN-γ are known to reduce epithelial barrier properties, HC could be expected to protect the barrier function and result in an anti-inflammatory effect. We investigated the impact of anti-inflammatory/inflammatory treatment on transepithelial electrical resistance (TEER) and the apparent permeability coefficient (Papp) of the low permeability marker sodium fluorescein (NaFlu). After incubating hAELVi cells for 48 hours with a combination of TNF-α and IFN-γ, there was a significant decrease in TEER and a significant increase in the Papp. The presence of HC maintained the TEER values and barrier properties, so that no significant Papp change was observed. By using hAELVi cells to study anti-inflammatory drugs in vitro, the need for animal experiments could be reduced and pulmonary drug development accelerated.


Subject(s)
Inflammation , Alveolar Epithelial Cells , COVID-19 , Humans , Permeability , SARS-CoV-2
4.
Eur J Pharm Biopharm ; 142: 405-410, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31288078

ABSTRACT

Maltodextrin, which is obtained by partial hydrolysis of starch, is water soluble and could serve as hydrophilic carrier for the encapsulation of protein-based active pharmaceutical ingredients. We investigated three different commercial maltodextrins (Dextrose Equivalents (DE) 4.0-7.0, DE 13.0-17.0 and DE 16.5-19.5) with focus on their ability to form nanoparticles by inverse precipitation. Successful particle formation was observed for DE 13.0-17.0 and DE 16.5-19.5 but not for DE 4.0-7.0. The process was investigated using acetone as anti-solvent and poloxamer 407 as stabilizer. A tunable size between 170 nm and 450 nm was achieved by varying the type of maltodextrin and the stabilizer concentration. Particles were spherical in shape and were stable over a time period of 14 days. Maltodextrin nanoparticles (MD NPs) were tested on A549 cells and did not show any cytotoxic effects. This underlines the potential of maltodextrin as material for drug delivery systems. Bovine serum albumin (BSA) as a model protein was successfully encapsulated into MD NPs with encapsulation efficiencies of approx. 70% and loading rates of up to 20%.


Subject(s)
Nanoparticles/chemistry , Polysaccharides/chemistry , Serum Albumin, Bovine/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Particle Size , Solubility/drug effects , Solvents/chemistry
5.
Pharmaceutics ; 10(2)2018 May 10.
Article in English | MEDLINE | ID: mdl-29747472

ABSTRACT

Hay fever is notoriously triggered when nasal mucosa is exposed to allergenic pollen. One possibility to overcome this pollen exposure may be the application of an ointment with physical protective effects. In this context, we have investigated Bepanthen® Eye and Nose Ointment and the ointment basis petrolatum as reference while using contemporary in vitro techniques. Pollen from false ragweed (Iva xanthiifolia) was used as an allergy-causing model deposited as aerosol using the Vitrocell® Powder Chamber (VPC) on Transwell® inserts, while being coated with either Bepanthen® Eye and Nose Ointment and petrolatum. No pollen penetration into ointments was observed upon confocal scanning laser microscopy during an incubation period of 2 h at 37 °C. The cellular response was further investigated by integrating the MucilAir™ cell system in the VPC and by applying pollen to Bepanthen® Eye and Nose Ointment covered cell cultures. For comparison, MucilAir™ were stimulated by lipopolysaccharides (LPS). No increased cytokine release of IL-6, TNF-α, or IL-8 was found after 4 h of pollen exposure, which demonstrates the safety of such ointments. Since nasal ointments act as a physical barrier against pollen, such preparations might support the prevention and management of hay fever.

6.
PLoS One ; 7(8): e42106, 2012.
Article in English | MEDLINE | ID: mdl-22879910

ABSTRACT

The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Viral Matrix Proteins/metabolism , Viral Proteins/metabolism , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Arginine/analogs & derivatives , Arginine/metabolism , Cell Line , DNA/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Nuclear Antigens/chemistry , Epstein-Barr Virus Nuclear Antigens/immunology , Gene Expression Regulation, Viral , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Immunoprecipitation , Methylation , Molecular Sequence Data , Multiprotein Complexes/metabolism , Mutant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , Repetitive Sequences, Amino Acid , Transfection , Viral Matrix Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/immunology , snRNP Core Proteins/metabolism
7.
Int J Cancer ; 129(5): 1105-15, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21710493

ABSTRACT

Epstein-Barr virus (EBV) is a human tumour virus that efficiently growth-transforms primary human B-lymphocytes in vitro. The viral nuclear antigen 2 (EBNA2) is essential for immortalisation of B-cells and stimulates viral and cellular gene expression through interaction with DNA-bound transcription factors. Like its cellular homologue Notch, it associates with the DNA-bound repressor RBPJκ (CSL/CBF1) thereby converting RBPJκ into the active state. For instance, both EBNA2 and Notch activate the cellular HES1 promoter. In EBV-transformed lymphocytes, the RNA of the NP9 protein encoded by human endogenous retrovirus HERV-K(HML-2) Type 1 is strongly up-regulated. The NP9 protein is detectable both in EBV-positive Raji cells, a Burkitt's lymphoma cell line, and in IB4, an EBV-transformed human lymphoblastoid cell line. NP9 binds to LNX that forms a complex with the Notch regulator Numb. Therefore, the function of NP9 vis-à-vis Notch and EBNA2 was analysed. Here, we show that NP9 binds to EBNA2 and negatively affects the EBNA2-mediated activation of the viral C- and LMP2A promoters. In contrast, NP9 did neither interfere in the activation of the HES1 promoter by Notch nor the induction of the viral LMP1 promoter by EBNA2. In an electrophoretic mobility shift analysis, NP9 reduced the binding of EBNA2 to DNA-bound RBPJκ by about 50%. The down-regulation of EBNA2-activity by NP9 might represent a cellular defence mechanism against viral infection or could, alternatively, represent an adaptation of the virus to prevent excessive viral protein production that might otherwise be harmful for the infected cell.


Subject(s)
Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Expression Regulation, Viral , Gene Products, env/metabolism , Promoter Regions, Genetic/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites , Blotting, Western , Burkitt Lymphoma/genetics , Burkitt Lymphoma/metabolism , COS Cells , Cell Nucleus/metabolism , Cells, Cultured , Chlorocebus aethiops , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Gene Products, env/genetics , Herpesvirus 4, Human/growth & development , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunoprecipitation , Luciferases/metabolism , Lymphocytes/metabolism , Protein Binding , Receptor, Notch1/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factor HES-1 , Transcriptional Activation , Viral Matrix Proteins/genetics
8.
Virology ; 397(2): 299-310, 2010 Feb 20.
Article in English | MEDLINE | ID: mdl-19969318

ABSTRACT

The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJkappa (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJkappa in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJkappa.


Subject(s)
Arginine/metabolism , DNA/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/physiology , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Promoter Regions, Genetic , Viral Proteins/metabolism , Animals , Cell Line , Gene Expression , Humans , Methylation , Mice , Mice, Inbred BALB C , Protein Binding , Rats , Viral Matrix Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...