Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Cardiovasc Med ; 21(4): 517-530, 2020 12 30.
Article in English | MEDLINE | ID: mdl-33387997

ABSTRACT

The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without early treatment can succumb to delayed in-hospital care and death. Prompt early initiation of sequenced multidrug therapy (SMDT) is a widely and currently available solution to stem the tide of hospitalizations and death. A multipronged therapeutic approach includes 1) adjuvant nutraceuticals, 2) combination intracellular anti-infective therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet agents/anticoagulants, 5) supportive care including supplemental oxygen, monitoring, and telemedicine. Randomized trials of individual, novel oral therapies have not delivered tools for physicians to combat the pandemic in practice. No single therapeutic option thus far has been entirely effective and therefore a combination is required at this time. An urgent immediate pivot from single drug to SMDT regimens should be employed as a critical strategy to deal with the large numbers of acute COVID-19 patients with the aim of reducing the intensity and duration of symptoms and avoiding hospitalization and death.


Subject(s)
COVID-19 Drug Treatment , Leprostatic Agents/therapeutic use , Pandemics , SARS-CoV-2 , Telemedicine/methods , COVID-19/epidemiology , Drug Therapy, Combination , Humans
2.
J Air Waste Manag Assoc ; 56(12): 1631-41, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17195482

ABSTRACT

A laboratory-scale reactor was developed to evaluate the capture of carbon dioxide (CO2) from a gas into a liquid as an approach to control greenhouse gases emitted from fixed sources. CO2 at 5-50% concentrations was passed through a gas-exchange membrane and transferred into liquid media--tap water or simulated brine. When using water, capture efficiencies exceeded 50% and could be enhanced by adding base (e.g., sodium hydroxide) or the combination of base and carbonic anhydrase, a catalyst that speeds the conversion of CO2 to carbonic acid. The transferred CO2 formed ions, such as bicarbonate or carbonate, depending on the amount of base present. Adding precipitating cations, like Ca++, produced insoluble carbonate salts. Simulated brine proved nearly as efficient as water in absorbing CO2, with less than a 6% reduction in CO2 transferred. The CO2 either dissolved into the brine or formed a mixture of gas and ions. If the chemistry was favorable, carbonate precipitate spontaneously formed. Energy expenditure of pumping brine up and down from subterranean depths was modeled. We conclude that using brine in a gas-exchange membrane system for capturing CO2 from a gas stream to liquid is technically feasible and can be accomplished at a reasonable expenditure of energy.


Subject(s)
Carbon Dioxide , Salts , Carbon Dioxide/analysis , Carbon Dioxide/isolation & purification , Carbonic Acid , Carbonic Anhydrases , Environmental Monitoring , Feasibility Studies , Greenhouse Effect , Hydrogen-Ion Concentration , Membranes, Artificial , Models, Biological , Polypropylenes , Sodium Hydroxide , Spectrometry, Fluorescence , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...