Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 36(10): 983-987, 2018 11.
Article in English | MEDLINE | ID: mdl-30247488

ABSTRACT

Despite rapid advances in sequencing technologies, accurately calling genetic variants present in an individual genome from billions of short, errorful sequence reads remains challenging. Here we show that a deep convolutional neural network can call genetic variation in aligned next-generation sequencing read data by learning statistical relationships between images of read pileups around putative variant and true genotype calls. The approach, called DeepVariant, outperforms existing state-of-the-art tools. The learned model generalizes across genome builds and mammalian species, allowing nonhuman sequencing projects to benefit from the wealth of human ground-truth data. We further show that DeepVariant can learn to call variants in a variety of sequencing technologies and experimental designs, including deep whole genomes from 10X Genomics and Ion Ampliseq exomes, highlighting the benefits of using more automated and generalizable techniques for variant calling.


Subject(s)
Genome, Human , Mammals/genetics , Neural Networks, Computer , Polymorphism, Single Nucleotide , Animals , DNA Mutational Analysis , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Sequence Analysis, DNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...