Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 45(6): 3217-3230, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28100698

ABSTRACT

Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork.


Subject(s)
Cell Cycle Proteins/metabolism , DNA, Single-Stranded/metabolism , Replication Protein A/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Humans , Models, Molecular , Protein Binding , Replication Protein A/chemistry
2.
FEBS Lett ; 590(23): 4233-4241, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27805738

ABSTRACT

High fidelity of genome duplication is ensured by cooperation of polymerase proofreading and mismatch repair (MMR) activities. Here, we show that human mismatch recognizing proteins MutS homolog 2 (MSH2) and MSH6 copurify and interact with replicative Pol α. This enzyme also is the replicative primase and replicates DNA with poor fidelity. We show that MSH2 associates with known human replication origins with different dynamics than DNA polymerase (Pol α). Furthermore, we explored the potential functional role of Pol α in the mismatch repair reaction using an in vitro mismatch repair assay and observed that Pol α promotes mismatch repair. Taken together, we show that human Pol α interacts with MSH2-MSH6 complex and propose that this interaction occurs during the mismatch repair reaction.


Subject(s)
DNA Mismatch Repair , DNA Polymerase I/metabolism , DNA-Binding Proteins/metabolism , MutS Homolog 2 Protein/metabolism , DNA Replication , HeLa Cells , Humans , Protein Binding , Substrate Specificity
3.
Cell Cycle ; 15(20): 2766-79, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27590262

ABSTRACT

The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.


Subject(s)
DNA Repair/genetics , Genome, Human , Homologous Recombination/genetics , Rad51 Recombinase/metabolism , S100 Proteins/metabolism , Calcium/metabolism , Cell Line , Cell Survival , Chromosome Aberrations , DNA Damage/genetics , Down-Regulation , Gene Knockdown Techniques , Humans , Mutant Proteins/metabolism , Protein Binding/genetics
4.
Cell Cycle ; 15(7): 974-85, 2016.
Article in English | MEDLINE | ID: mdl-26919204

ABSTRACT

Cdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells. However, these cells displayed an about 2-fold diminished fork elongation rate, a pronounced asymmetry of replication fork extension, and an early S phase arrest. This was accompanied by H2AX-phosphorylation and subsequent apoptosis. Unexpectedly, we did not observe increased ATR/Chk1 signaling but rather a mild ATM/Chk2 response. In addition, we detected accumulation of long stretches of single-stranded DNA, a hallmark of replication catastrophe. We conclude that increased origin firing by upregulated Cdc45 caused exhaustion of the single-strand binding protein RPA, which in consequence diminished the ATR/Chk1 response; the subsequently occurring fork breaks led to an ATM/Chk2 mediated phosphorylation of H2AX and eventually to apoptosis.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication , Apoptosis , DNA, Single-Stranded/analysis , HeLa Cells , Histones/metabolism , Humans , Replication Origin , S Phase Cell Cycle Checkpoints , Signal Transduction
5.
J Phys Chem Lett ; 6(3): 464-9, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-26261964

ABSTRACT

Though III-V/Si(100) heterointerfaces are essential for future epitaxial high-performance devices, their atomic structure is an open historical question. Benchmarking of transient optical in situ spectroscopy during chemical vapor deposition to chemical analysis by X-ray photoelectron spectroscopy enables us to distinguish between formation of surfaces and of the heterointerface. A terrace-related optical anisotropy signal evolves during pulsed GaP nucleation on single-domain Si(100) surfaces. This dielectric anisotropy agrees well with the one calculated for buried GaP/Si(100) interfaces from differently thick GaP epilayers. X-ray photoelectron spectroscopy reveals a chemically shifted contribution of the P and Si emission lines, which quantitatively corresponds to one monolayer and establishes simultaneously with the nucleation-related optical in situ signal. We attribute that contribution to the existence of Si-P bonds at the buried heterointerface. During further pulsing and annealing in phosphorus ambient, dielectric anisotropies known from atomically well-ordered GaP(100) surfaces superimpose the nucleation-related optical in situ spectra.

6.
Nucleic Acids Res ; 42(20): 12614-27, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25336622

ABSTRACT

Human RecQL4 belongs to the ubiquitous RecQ helicase family. Its N-terminal region represents the only homologue of the essential DNA replication initiation factor Sld2 of Saccharomyces cerevisiae, and also participates in the vertebrate initiation of DNA replication. Here, we utilized a random screen to identify N-terminal fragments of human RecQL4 that could be stably expressed in and purified from Escherichia coli. Biophysical characterization of these fragments revealed that the Sld2 homologous RecQL4 N-terminal domain carries large intrinsically disordered regions. The N-terminal fragments were sufficient for the strong annealing activity of RecQL4. Moreover, this activity appeared to be the basis for an ATP-independent strand exchange activity. Both activities relied on multiple DNA-binding sites with affinities to single-stranded, double-stranded and Y-structured DNA. Finally, we found a remarkable affinity of the N-terminus for guanine quadruplex (G4) DNA, exceeding the affinities for other DNA structures by at least 60-fold. Together, these findings suggest that the DNA interactions mediated by the N-terminal region of human RecQL4 represent a central function at the replication fork. The presented data may also provide a mechanistic explanation for the role of elements with a G4-forming propensity identified in the vicinity of vertebrate origins of DNA replication.


Subject(s)
DNA/metabolism , RecQ Helicases/chemistry , RecQ Helicases/metabolism , Binding Sites , DNA/chemistry , DNA-Binding Proteins/chemistry , G-Quadruplexes , Humans , Intrinsically Disordered Proteins/chemistry , Protein Binding , Protein Structure, Tertiary
7.
J Biol Chem ; 289(33): 22798-22814, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24990949

ABSTRACT

DHX9 is an ATP-dependent DEXH box helicase with a multitude of cellular functions. Its ability to unwind both DNA and RNA, as well as aberrant, noncanonical polynucleotide structures, has implicated it in transcriptional and translational regulation, DNA replication and repair, and maintenance of genome stability. We report that loss of DHX9 in primary human fibroblasts results in premature senescence, a state of irreversible growth arrest. This is accompanied by morphological defects, elevation of senescence-associated ß-galactosidase levels, and changes in gene expression closely resembling those encountered during replicative (telomere-dependent) senescence. Activation of the p53 signaling pathway was found to be essential to this process. ChIP analysis and investigation of nascent DNA levels revealed that DHX9 is associated with origins of replication and that its suppression leads to a reduction of DNA replication. Our results demonstrate an essential role of DHX9 in DNA replication and normal cell cycle progression.


Subject(s)
Cell Cycle Checkpoints/physiology , Cellular Senescence/physiology , DEAD-box RNA Helicases/metabolism , DNA Replication/physiology , Fibroblasts/metabolism , Neoplasm Proteins/metabolism , Signal Transduction/physiology , Tumor Suppressor Protein p53/metabolism , DEAD-box RNA Helicases/genetics , Diploidy , Fibroblasts/cytology , HEK293 Cells , Humans , Neoplasm Proteins/genetics , Tumor Suppressor Protein p53/genetics , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
9.
Nucleic Acids Res ; 42(4): 2308-19, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24293646

ABSTRACT

The cell division cycle protein 45 (Cdc45) represents an essential replication factor that, together with the Mcm2-7 complex and the four subunits of GINS, forms the replicative DNA helicase in eukaryotes. Recombinant human Cdc45 (hCdc45) was structurally characterized and its DNA-binding properties were determined. Synchrotron radiation circular dichroism spectroscopy, dynamic light scattering, small-angle X-ray scattering and atomic force microscopy revealed that hCdc45 exists as an alpha-helical monomer and possesses a structure similar to its bacterial homolog RecJ. hCdc45 bound long (113-mer or 80-mer) single-stranded DNA fragments with a higher affinity than shorter ones (34-mer). hCdc45 displayed a preference for 3' protruding strands and bound tightly to single-strand/double-strand DNA junctions, such as those presented by Y-shaped DNA, bubbles and displacement loops, all of which appear transiently during the initiation of DNA replication. Collectively, our findings suggest that hCdc45 not only binds to but also slides on DNA with a 3'-5' polarity and, thereby acts as a molecular 'wedge' to initiate DNA strand displacement.


Subject(s)
Cell Cycle Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA/metabolism , Cell Cycle Proteins/metabolism , DNA/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Humans , Nucleic Acid Conformation , Protein Binding , Protein Folding , Protein Structure, Secondary
10.
Blood ; 121(17): 3402-12, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23440244

ABSTRACT

ABT-737 is a promising chemotherapeutic agent that promotes apoptosis by acting as a selective BH3 mimetic to neutralize Bcl-2-like family members. One shortcoming with its use is that Mcl-1, a member of the Bcl-2 family, is poorly inhibited by ABT-737 and thus is a major cause of resistance. We performed a short hairpin RNA (shRNA)-based drop-out screen to identify novel genes and pathways that could reverse resistance to ABT-737 treatment in Eµ-myc/Bcl-2 lymphoma cells engineered to rely on endogenous Mcl-1 for survival. Several drug-sensitive shRNAs were identified that were selectively depleted in the presence of ABT-737. Of these, 2 independent shRNAs targeting the RNA/DNA helicase Dhx9 were found to sensitize lymphomas to ABT-737 to an extent comparable to control Mcl-1 shRNAs. Although Dhx9 suppression sensitized both mouse and human cells to ABT-737 treatment, it did so without altering MCL-1 levels. Rather, loss of Dhx9 appeared to activate a p53-dependent apoptotic program, through aggravation of replicative stress, which was found to be both necessary and sufficient for the ABT-737-shDhx9 synthetic lethal relationship.


Subject(s)
Biphenyl Compounds/pharmacology , DEAD-box RNA Helicases/genetics , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Lymphoma/genetics , Nitrophenols/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Sulfonamides/pharmacology , Animals , Cell Cycle , Cyclin-Dependent Kinase Inhibitor p16/physiology , DEAD-box RNA Helicases/antagonists & inhibitors , DEAD-box RNA Helicases/metabolism , Genes, Modifier , Humans , Lymphoma/pathology , Mice , Myeloid Cell Leukemia Sequence 1 Protein , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism
11.
Nucleic Acids Res ; 40(17): 8309-24, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22730300

ABSTRACT

The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have identified the first 54 amino acids of RecQL4 (RecQL4_N54) as the minimum interaction region with human TopBP1. The solution structure of RecQL4_N54 was determined by heteronuclear liquid-state nuclear magnetic resonance (NMR) spectroscopy (PDB 2KMU; backbone root-mean-square deviation 0.73 Å). Despite low-sequence homology, the well-defined structure carries an overall helical fold similar to homeodomain DNA-binding proteins but lacks their archetypical, minor groove-binding N-terminal extension. Sequence comparison indicates that this N-terminal homeodomain-like fold is a common hallmark of metazoan RecQL4 and yeast Sld2 DNA replication initiation factors. RecQL4_N54 binds DNA without noticeable sequence specificity yet with apparent preference for branched over double-stranded (ds) or single-stranded (ss) DNA. NMR chemical shift perturbation observed upon titration with Y-shaped, ssDNA and dsDNA shows a major contribution of helix α3 to DNA binding, and additional arginine side chain interactions for the ss and Y-shaped DNA.


Subject(s)
DNA/metabolism , Homeodomain Proteins/chemistry , RecQ Helicases/chemistry , Amino Acid Sequence , Carrier Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/metabolism , Protein Interaction Domains and Motifs , RecQ Helicases/metabolism , Sequence Alignment
12.
J Cell Biochem ; 113(5): 1744-53, 2012 May.
Article in English | MEDLINE | ID: mdl-22213094

ABSTRACT

TopBP1 is a BRCT domain-rich protein that is structurally and functionally conserved throughout eukaryotic organisms. It is required for the initiation of DNA replication and for DNA repair and damage signalling. To further dissect its biological functions, we explored TopBP1-interacting proteins by co-immunoprecipitation assays and LC-ESI-MS-analyses. As TopBP1 binding partners we identified p54(nrb) and PSF, and confirmed the physical interactions by GST pull-down assays, co-immunoprecipitations and by yeast two-hybrid experiments. Recent evidence shows an involvement of p54(nrb) and PSF in DNA double-strand break repair (DSB) and radioresistance. To get a first picture of the physiological significance of the interaction of TopBP1 with p54(nrb) and PSF we investigated in real time the spatiotemporal behaviour of the three proteins after laser microirradiation of living cells. Localisation of TopBP1 at damage sites was noticed as early as 5 s following damage induction, whereas p54(nrb) and PSF localised there after 20 s. Both p54(nrb) and PSF disappeared after 20 s while TopBP1 was retained at damage sites significantly longer suggesting different functions of the proteins during DSB recognition and repair.


Subject(s)
Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Octamer Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Base Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Primers/genetics , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Matrix-Associated Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Octamer Transcription Factors/chemistry , Octamer Transcription Factors/genetics , PTB-Associated Splicing Factor , Protein Interaction Domains and Motifs , Proteomics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Two-Hybrid System Techniques
13.
DNA Repair (Amst) ; 10(6): 654-65, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21561811

ABSTRACT

Human DHX9 helicase, also known as nuclear DNA helicase II (NDH II) and RNA helicase A (RHA), belongs to the SF2 superfamily of nucleic acid unwinding enzymes. DHX9 melts simple DNA-DNA, RNA-RNA, and DNA-RNA strands with a 3'-5' polarity; despite this little is known about its substrate specificity. Here, we used partial duplex DNA consisting of M13mp18 DNA and oligonucleotide-based replication and recombination intermediates. We show that DHX9 unwinds DNA- and RNA-containing forks, DNA- and RNA-containing displacement loops (D- and R-loops), and also G-quadruplexes. With these substrates, DHX9 behaved similarly as the RecQ helicase WRN. In contrast to WRN, DHX9 melted RNA-hybrids considerably faster than the corresponding DNA-DNA strands. DHX9 preferably unwound R-loops and DNA-based G-quadruplexes indicating that these structures may be biologically relevant. DHX9 also unwound RNA-based G-quadruplexes that have been reported to occur in human transcripts. It is believed that an improper dissolution of co-transcriptionally formed D-loops, R-loops, and DNA- or RNA-based G-quadruplexes represent potential roadblocks for transcription and thereby enhance transcription associated recombination events. By unwinding these structures, DHX9 may significantly contribute to transcriptional activation and also to the maintenance of genomic stability.


Subject(s)
DEAD-box RNA Helicases/metabolism , Neoplasm Proteins/metabolism , Nucleic Acid Conformation , RNA/metabolism , G-Quadruplexes , Humans , RNA/chemistry , Substrate Specificity
14.
Biochemistry ; 49(33): 6992-9, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20669935

ABSTRACT

Naturally occurring poly(purine.pyrimidine) rich regions in the human genome are prone to adopting non-canonical DNA structures such as intramolecular triplexes (i.e., H-DNA). Such structure-forming sequences are abundant and can regulate the expression of several disease-linked genes. In addition, the use of triplex-forming oligonucleotides (TFOs) to modulate gene structure and function has potential as an approach to targeted gene therapy. Previously, we found that endogenous H-DNA structures can induce DNA double-strand breaks and promote genomic rearrangements. Herein, we find that the DHX9 helicase co-immunoprecipitates with triplex DNA structures in mammalian cells, suggesting a role in the maintenance of genome stability. We tested this postulate by assessing the helicase activity of purified human DHX9 on various duplex and triplex DNA substrates in vitro. DHX9 displaced the third strand from a specific triplex DNA structure and catalyzed the unwinding with a 3' --> 5' polarity with respect to the displaced third strand. Helicase activity required a 3'-single-stranded overhang on the third strand and was dependent on ATP hydrolysis. The reaction kinetics consisted of a pre-steady-state burst phase followed by a linear, steady-state pseudo-zero-order reaction. In contrast, very little if any helicase activity was detected on blunt triplexes, triplexes with 5'-overhangs, blunt duplexes, duplexes with overhangs, or forked duplex substrates. Thus, triplex structures containing a 3'-overhang represent preferred substrates for DHX9, where it removes the strand with Hoogsteen hydrogen-bonded bases. Our results suggest the involvement of DHX9 in maintaining genome integrity by unwinding mutagenic triplex DNA structures.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA/metabolism , Neoplasm Proteins/metabolism , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/isolation & purification , DNA/chemistry , Humans , Neoplasm Proteins/isolation & purification , Nucleic Acid Conformation , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
15.
Anal Biochem ; 405(1): 11-8, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20522331

ABSTRACT

Enzymes with 3'-5' exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3'-5' exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3' end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.


Subject(s)
DNA Polymerase I/metabolism , Exodeoxyribonucleases/metabolism , Sequence Analysis, DNA/methods , DNA Repair , DNA Replication , High-Throughput Screening Assays , Inverted Repeat Sequences , Oligonucleotides/metabolism , Phosphates/chemistry
16.
Nucleic Acids Res ; 38(14): 4722-30, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20385589

ABSTRACT

Mutations in the Werner gene promote the segmental progeroid Werner syndrome (WS) with increased genomic instability and cancer. The Werner gene encodes a DNA helicase (WRN) that can engage in direct protein-protein interactions with DHX9, also known as RNA helicase A or nuclear DNA helicase II, which represents an essential enzyme involved in transcription and DNA repair. By using several synthetic nucleic acid substrates we demonstrate that WRN preferably unwinds RNA-containing Okazaki fragment-like substrates suggesting a role in lagging strand maturation of DNA replication. In contrast, DHX9 preferably unwinds RNA-RNA and RNA-DNA substrates, but fails to unwind Okazaki fragment-like hybrids. We further show that the preferential unwinding of RNA-containing substrates by WRN is stimulated by DHX9 in vitro, both on Okazaki fragment-like hybrids and on RNA-containing 'chicken-foot' structures. Collectively, our results suggest that WRN and DHX9 may also cooperate in vivo, e.g. at ongoing and stalled replication forks. In the latter case, the cooperation between both helicases may serve to form and to dissolve Holliday junction-like intermediates of regressed replication forks.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA/metabolism , Exodeoxyribonucleases/metabolism , Neoplasm Proteins/metabolism , RecQ Helicases/metabolism , DNA, Cruciform/metabolism , Humans , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/metabolism , RNA/metabolism , Werner Syndrome Helicase
17.
J Mol Evol ; 70(4): 325-38, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20349054

ABSTRACT

The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk's composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.


Subject(s)
Fibroins/genetics , Spiders/genetics , Analysis of Variance , Animals , Blotting, Northern , Blotting, Southern , DNA, Complementary/analysis , Polymorphism, Genetic , RNA, Messenger/analysis , Sequence Alignment , Sequence Analysis, DNA/methods
19.
Methods Mol Biol ; 587: 291-302, 2010.
Article in English | MEDLINE | ID: mdl-20225158

ABSTRACT

Nuclear DNA helicase II (NDH II) was first isolated from calf thymus using a DNA-unwinding assay. Subsequently it has been shown to be a homologue of human RNA helicase A (RHA) and the maleless protein (MLE) from Drosophila. Accordingly, the protein possesses both DNA and RNA unwinding activities. Also, it can use all four NTPs or dNTPs to fuel the reaction. At its N-terminus it possesses two double-strand RNA binding domains (dsRBD I and II), while the C-terminus comprises an imperfect glycine (G)- and arginine (R)-rich repeat, a so-called RGG-box that preferably binds to ssDNA or ssRNA. Many proteins interact with NDH II both at its N- and C-terminus and thereby mediate transcriptional regulation, RNA processing, and transport, the DNA damage response and genome surveillance. The latter includes the histone variant gamma-H2AX and the Werner syndrome helicase (WRN). Here we describe experimental approaches to obtain mechanistic information about this important nuclear helicase.


Subject(s)
DNA Helicases/metabolism , Animals , Cattle , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Helicases/genetics , Humans , Nucleotides/chemistry , Nucleotides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Subcell Biochem ; 50: 79-104, 2010.
Article in English | MEDLINE | ID: mdl-20012578

ABSTRACT

Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.


Subject(s)
DNA Replication , Animals , Eukaryotic Cells , Evolution, Molecular , Humans , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...