Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 30(11): 3264-73, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24571209

ABSTRACT

New insights into electrochemical kinetics of the flavin adenine dinucleotide (FAD) redox center of glucose-oxidase (GlcOx) immobilized on reduced graphene oxide (rGO), single- and multiwalled carbon nanotubes (SW and MWCNT), and combinations of rGO and CNTs have been gained by application of Fourier transformed AC voltammetry (FTACV) and simulations based on a range of models. A satisfactory level of agreement between experiment and theory, and hence establishment of the best model to describe the redox chemistry of FAD, was achieved with the aid of automated e-science tools. Although still not perfect, use of Marcus theory with a very low reorganization energy (≤0.3 eV) best mimics the experimental FTACV data, which suggests that the process is gated as also deduced from analysis of FTACV data obtained at different frequencies. Failure of the simplest models to fully describe the electrode kinetics of the redox center of GlcOx, including those based on the widely employed Laviron theory is demonstrated, as is substantial kinetic heterogeneity of FAD species. Use of a SWCNT support amplifies the kinetic heterogeneity, while a combination of rGO and MWCNT provides a more favorable environment for fast communication between FAD and the electrode.


Subject(s)
Carbon/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Flavin-Adenine Dinucleotide/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Aspergillus niger/enzymology , Electrochemistry , Electrodes , Flavin-Adenine Dinucleotide/chemistry , Kinetics , Oxidation-Reduction
2.
J Phys Chem B ; 115(13): 3371-8, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21401135

ABSTRACT

By using inherently conducting polymers, we introduce new shape memory functionality for stimuli-responsive polymers. The shape memory process is unique in that it utilizes electrochemical control of the polymer redox state to conceal, and temporarily store, preformed nanoscale surface patterns, which can later be recalled. Unlike classical thermoset and thermoplastic shape memory polymers, the electrochemical control does not completely perturb the low entropy state of the deformed polymer chains, thus enabling the concept of reversible transition between the permanent and temporary shapes. This is demonstrated using electrochemical-atomic force microscopy/quartz crystal microbalance to characterize the modulation of nanoscale deformations in electroactive polybithiophene films. Experimental results reveal that cation/solvent exchange with the electrolyte and its effect on reconfiguration of the film structure is the mechanism behind the process. In addition to incorporating conductive properties into shape-memory polymers, the ability to reversibly modulate surface nanopatterns in a liquid environment is also of significant interest in tribology and biointerface applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...