Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 336: 139283, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348616

ABSTRACT

The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 µm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 µm, 0.8 µm and 0.22 µm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.


Subject(s)
Air Pollutants , Artemia , Humans , Animals , Brazil , Aerosols/toxicity , Aerosols/analysis , Biological Assay , Seasons , Environmental Monitoring/methods , Air Pollutants/analysis
2.
Environ Technol ; : 1-20, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36927407

ABSTRACT

Using the Response Surface Methodology (RSM) and Rotational Central Composite Design (RCCD), this study evaluated the removal of DCF under denitrifying conditions, with ethanol as cosubstrate, in batch reactors, being 1 L Erlenmeyer flasks (330 mL of reactional volume) containing Dofing medium and kept under agitation at 130 rpm and incubated at mesophilic temperature (30 °C). It considered the individual and multiple effects of the variables: nitrate (130 - 230 mg NO3- L-1), DCF (60-100 µg DCF L-1) and ethanol (130 - 230 mg EtOH L-1). The highest drug removal efficiency (17.5%) and total nitrate removal were obtained at 176.6 ± 4.3 mg NO3 -L-1, 76.8 ± 3.7 µg DCF L-1, and 180.0 ± 2.5 mg EtOH L-1. Under such conditions, the addition of ethanol and nitrate was significant for the additional removal of diclofenac (p > 0.05). The prevalence of Rhodanobacter, Haliangium and Terrimonas in the inoculum biomass (activated sludge systems) was identified through the 16S rRNA gene sequencing. The potential of these genera to remove nitrate and degrade diclofenac was inferred, and the main enzymes potentially involved in this process were α-methylacyl-CoA racemase, long-chain fatty acid-CoA ligase, catalases and pseudoperoxidases.

3.
J Environ Manage ; 299: 113532, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34614559

ABSTRACT

Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 µg L-1, 166 ± 55-462 ± 213 µg L-1 and 201 ± 113-250 ± 141 µg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 µg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 µg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 µg L-1 influent), IBU (50 ± 15 % for 164 ± 47 µg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 µg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 µg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).


Subject(s)
Pharmaceutical Preparations , Sewage , Anaerobiosis , Brazil , Hygiene
4.
Environ Res ; 199: 111220, 2021 08.
Article in English | MEDLINE | ID: mdl-33992637

ABSTRACT

Triclosan (TCS) and propranolol (PRO) are emerging micropollutants that are difficult to remove in wastewater treatment plants. In this study, methanogenic potential (P) of anaerobic sludge submitted to TCS (3.6 ± 0.1 to 15.5 ± 0.1 mg L-1) and PRO (6.1 ± 0.1 to 55.9 ± 1.2 mg L-1) in sanitary sewage, was investigated in batch reactors. The use of cosubstrates (200 mg L-1 of organic matter) ethanol, methanol:ethanol and fumarate was evaluated for micropollutant degradation. Without cosubstrates, P values for 5.0 ± 0.1 mgTCS L-1, 15.5 ± 0.1 mgTCS L-1 and 55.0 ± 1.3 mgPRO L-1 were 50.53%, 98.24% and 17.66% lower in relation to Control assay (855 ± 5 µmolCH4) with sanitary sewage, without micropollutants and cosubstrates, respectively. The use of fumarate, ethanol and methanol:ethanol favored greater methane production, with P values of 2144 ± 45 µmolCH4, 2960 ± 185 µmolCH4 and 2239 ± 171 µmolCH4 for 5.1 ± 0.1 mgTCS L-1, respectively; and of 10,827 ± 185 µmolCH4, 10,946 ± 108 µmolCH4 and 10,809 ± 210 µmolCH4 for 55.0 ± 1.3 mgPRO L-1, respectively. Greater degradation of TCS (77.1 ± 0.1% for 5.1 ± 0.1 mg L-1) and PRO (24.1 ± 0.1% for 55.9 ± 1.2 mg L-1) was obtained with ethanol. However, with 28.5 ± 0.5 mg PRO L-1, greater degradation (88.4 ± 0.9%) was obtained without cosubstrates. With TCS, via sequencing of rRNA 16S gene, for Bacteria Domain, greater abundance of phylum Chloroflexi and of the genera Longilinea, Arcobacter, Mesotoga and Sulfuricurvum were identified. With PRO, the genus VadinBC27 was the most abundant. Methanosaeta was dominant in TCS with ethanol, while in PRO without cosubstrates, Methanobacterium and Methanosaeta were the most abundant. The use of metabolic cosubstrates is a favorable strategy to obtain greater methanogenic potential and degradation of TCS and PRO.


Subject(s)
Triclosan , Water Purification , Anaerobiosis , Bioreactors , Propranolol , Sewage
5.
Sci Total Environ ; 742: 140530, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32629260

ABSTRACT

Diclofenac (DCF) and ibuprofen (IBU) are widely used anti-inflammatory drugs and are frequently detected in wastewater from Wastewater Treatment Plants and in aquatic environments. In this study, the methanogenic potential (P) of anaerobic sludge subjected to DCF (7.11 ± 0.02 to 44.41 ± 0.05 mg L-1) and IBU (6.11 ± 0.01 to 42.61 ± 0.05 mg L-1), in sanitary sewage, was investigated in batch reactors. Cosubstrates (200 mg L-1 of organic matter) in the form of ethanol, methanol:ethanol and fumarate were tested separately for the removal of drugs. In the DCF assays, P was 6943 ± 121 µmolCH4, 9379 ± 259 µmolCH4, 9897 ± 212 µmolCH4 and 11,530 ± 368 µmolCH4 for control, fumarate, methanol:ethanol and ethanol conditions, respectively. In the IBU assays, under the same conditions, P was 6145 ± 101 µmolCH4, 6947 ± 66 µmolCH4, 8141 ± 191 µmolCH4and 10,583 ± 512 µmolCH4, respectively. Without cosubstrates, drug removal was below 18% for 43.10 ± 0.01 mgDCF L-1 and 43.12 ± 0.03 mgIBU L-1, respectively. Higher P and removal of DCF (28.24 ± 1.10%) and IBU (18.72 ± 1.60%) with ethanol was observed for 43.20 ± 0.01 mgDCF L-1 and 43.42 ± 0.03 mgIBU L-1, respectively. This aspect was better evidenced with DCF due to its molecular structure, a condition that resulted in a higher diversity of bacterial populations. Through the 16S rRNA sequencing, bacteria genera capable of performing aromatic ring cleavage, ß-oxidation and oxidation of ethanol and fatty acids were identified. Higher relative abundance (>0.6%) was observed for Smithella, Sulfuricurvum and Synthophus for the Bacteria Domain and Methanosaeta (>79%) for the Archaea Domain. The use of ethanol favored greater mineralization of organic matter and greater methane production, which can directly assist in the metabolic pathways of microorganisms.


Subject(s)
Diclofenac , Sewage , Anaerobiosis , Ibuprofen , Methane , RNA, Ribosomal, 16S , Wastewater
6.
Environ Sci Pollut Res Int ; 22(10): 7936-47, 2015 May.
Article in English | MEDLINE | ID: mdl-25516246

ABSTRACT

This manuscript reports a 3-year study on occurrence of pharmaceuticals, hormones, and triclosan in surface waters of a central urban region of São Paulo State of Southeast Brazil (the Monjolinho River in São Carlos). Water samples collected once at every 2 months were pre-concentrated by solid-phase extraction (SPE) and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The most frequently detected compounds in higher concentrations were caffeine, paracetamol, and atenolol (maximum concentrations 129,585, 30,421, and 8199 ng L(-1), respectively), while hormones estrone and 17-ß-estradiol were the least detected, in levels up to 14.8 ng L(-1). There was an increasing trend in concentrations of most of the compounds along the river course, especially downstream of the river where there is discharge of both wastewater treatment plant effluent and raw sewage from a particular region of São Carlos city. Concentrations of contaminants were higher during dry periods as a result of decline in the water levels. Decrease in concentrations near the river mouth occurred to different extents for each compound. It was high for caffeine and atenolol, but was very low for carbamazepine and diclofenac. The present study reports the first data about the occurrence of some major emerging contaminants in the Monjolinho River. Besides its regional significance, this work may assist in composing a dataset for water contamination diagnosis focusing on emerging contaminants, both in the Brazilian as well as in the Global studies related to aquatic ecosystems. Such datasets can be helpful for making future public policies on water quality, since these compounds are not yet legally regulated.


Subject(s)
Anti-Infective Agents, Local/analysis , Hormones/analysis , Pharmaceutical Preparations/analysis , Triclosan/analysis , Water Pollutants, Chemical/analysis , Brazil , Caffeine/analysis , Chromatography, Liquid , Cities , Environmental Monitoring , Rivers/chemistry , Seasons , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...