Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 18(4): 778-788, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29573184

ABSTRACT

High-throughput sequencing is a powerful tool, but suffers biases and errors that must be accounted for to prevent false biological conclusions. Such errors include batch effects; technical errors only present in subsets of data due to procedural changes within a study. If overlooked and multiple batches of data are combined, spurious biological signals can arise, particularly if batches of data are correlated with biological variables. Batch effects can be minimized through randomization of sample groups across batches. However, in long-term or multiyear studies where data are added incrementally, full randomization is impossible, and batch effects may be a common feature. Here, we present a case study where false signals of selection were detected due to a batch effect in a multiyear study of Alpine ibex (Capra ibex). The batch effect arose because sequencing read length changed over the course of the project and populations were added incrementally to the study, resulting in nonrandom distributions of populations across read lengths. The differences in read length caused small misalignments in a subset of the data, leading to false variant alleles and thus false SNPs. Pronounced allele frequency differences between populations arose at these SNPs because of the correlation between read length and population. This created highly statistically significant, but biologically spurious, signals of selection and false associations between allele frequencies and the environment. We highlight the risk of batch effects and discuss strategies to reduce the impacts of batch effects in multiyear high-throughput sequencing studies.


Subject(s)
Goats/genetics , High-Throughput Nucleotide Sequencing , Animals , Gene Frequency , Polymorphism, Single Nucleotide , Selection, Genetic
2.
J Anim Breed Genet ; 134(1): 78-84, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27339108

ABSTRACT

In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately.


Subject(s)
Goats/classification , Goats/genetics , Microsatellite Repeats , Animals , Conservation of Natural Resources , Female , Male , Phylogeography
3.
Mol Ecol Resour ; 13(3): 447-60, 2013 May.
Article in English | MEDLINE | ID: mdl-23398610

ABSTRACT

Introgression can be an important evolutionary force but it can also lead to species extinction and as such is a crucial issue for species conservation. However, introgression is difficult to detect, morphologically as well as genetically. Hybridization with domestic cats (Felis silvestris catus) is a major concern for the conservation of European wildcats (Felis s. silvestris). The available morphologic and genetic markers for the two Felis subspecies are not sufficient to reliably detect hybrids beyond first generation. Here we present a single nucleotide polymorphism (SNP) based approach that allows the identification of introgressed individuals. Using high-throughput sequencing of reduced representation libraries we developed a diagnostic marker set containing 48 SNPs (Fst > 0.8) which allows the identification of wildcats, domestic cats, their hybrids and backcrosses. This allows assessing introgression rate in natural wildcat populations and is key for a better understanding of hybridization processes.


Subject(s)
Cats/genetics , Felis/genetics , Genetic Markers/genetics , Genetics, Population , Hybridization, Genetic/genetics , Animals , Base Sequence , DNA, Mitochondrial/genetics , Gene Frequency , Gene Library , High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...