Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 9: 777, 2018.
Article in English | MEDLINE | ID: mdl-29988577

ABSTRACT

Chemoreception in insects is mediated by several components interacting at different levels and including odorant-binding proteins (OBPs). Although recent studies demonstrate that the function of OBPs cannot be restricted to an exclusively olfactory role, and that OBPs have been found also in organs generally not related to chemoreception, their feature of binding molecules remains undisputed. Studying the vetch aphid Megoura viciae (Buckton), we used a transcriptomic approach to identify ten OBPs in the antennae and we examined the ultrastructural morphology of sensilla and their distribution on the antennae, legs, mouthparts and cauda of wingless and winged adults by scanning electron microscopy (SEM). Three types of sensilla, trichoid, coeloconic and placoid, differently localized and distributed on antennae, mouthparts, legs and cauda, were described. The expression analysis of the ten OBPs was performed by RT-qPCR in the antennae and other body parts of the wingless adults and at different developmental stages and morphs. Five of the ten OBPs (MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7, and MvicOBP8), whose antibodies were already available, were selected for experiments of whole-mount immunolocalization on antennae, mouthparts, cornicles and cauda of adult aphids. Most of the ten OBPs were more expressed in antennae than in other body parts; MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7 were also immunolocalized in the sensilla on the antennae, suggesting a possible involvement of these proteins in chemoreception. MvicOBP6, MvicOBP7, MvicOBP8, MvicOBP9 were highly expressed in the heads and three of them (MvicOBP6, MvicOBP7, MvicOBP8) were immunolocalized in the sensilla on the mouthparts, supporting the hypothesis that also mouthparts may be involved in chemoreception. MvicOBP2, MvicOBP3, MvicOBP5, MvicOBP8 were highly expressed in the cornicles-cauda and two of them (MvicOBP3, MvicOBP8) were immunolocalized in cornicles and in cauda, suggesting a possible new function not related to chemoreception. Moreover, the response of M. viciae to different components of the alarm pheromone was assessed by behavioral assays on wingless adult morph; (-)-α-pinene and (+)-limonene were found to be the components mainly eliciting an alarm response. Taken together, our results represent a road map for subsequent in-depth analyses of the OBPs involved in several physiological functions in M. viciae, including chemoreception.

2.
Sci Rep ; 7(1): 11775, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924205

ABSTRACT

Toxoneuron nigriceps (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Lepidoptera, Noctuidae). The bracovirus associated with this wasp (TnBV) is currently being studied. Several genes expressed in parasitised host larvae have been isolated and their possible roles partly elucidated. TnBVank1 encodes an ankyrin motif protein similar to insect and mammalian IκB, an inhibitor of the transcription nuclear factor κB (NF-κB). Here we show that, when TnBVank1 was stably expressed in polyclonal Drosophila S2 cells, apoptosis is induced. Furthermore, we observed the same effects in haemocytes of H. virescens larvae, after TnBVank1 in vivo transient transfection, and in haemocytes of parasitised larvae. Coimmunoprecipitation experiments showed that TnBVANK1 binds to ALG-2 interacting protein X (Alix/AIP1), an interactor of apoptosis-linked gene protein 2 (ALG-2). Using double-immunofluorescence labeling, we observed the potential colocalization of TnBVANK1 and Alix proteins in the cytoplasm of polyclonal S2 cells. When Alix was silenced by RNA interference, TnBVANK1 was no longer able to cause apoptosis in both S2 cells and H. virescens haemocytes. Collectively, these results indicate that TnBVANK1 induces apoptosis by interacting with Alix, suggesting a role of TnBVANK1 in the suppression of host immune response observed after parasitisation by T. nigriceps.


Subject(s)
Apoptosis , Hemocytes , Lepidoptera/metabolism , Lepidoptera/virology , Polydnaviridae/metabolism , Viral Proteins/metabolism , Animals , Hemocytes/metabolism , Hemocytes/virology , Lepidoptera/genetics , Polydnaviridae/genetics , Viral Proteins/genetics
3.
Curr Biol ; 27(1): 55-61, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-27916525

ABSTRACT

The sesquiterpene (E)-ß-farnesene (EBF) is the alarm pheromone for many species of aphids [1]. When released from aphids attacked by parasitoids or predators, it alerts nearby conspecifics to escape by walking away and dropping off the host plant [2, 3]. The reception of alarm pheromone in aphids is accomplished through a highly sensitive chemosensory system. Although olfaction-related gene families including odorant receptors (ORs) and odorant-binding proteins (OBPs) have recently been identified from aphid genomes [4-6], the cellular and molecular mechanisms of EBF reception are still largely unknown. Here we demonstrate that ApisOR5, a member of the large superfamily of odorant receptors, is expressed in large placoid sensillum neurons on the sixth antennal segment and confers response to EBF when co-expressed with Orco, an obligate odorant receptor co-receptor, in parallel heterologous expression systems. In addition, the repellent behavior of Acyrthosiphon pisum to EBF disappears after knocking down ApisOR5 by RNAi as well as two A. pisum odorant-binding proteins known to bind EBF (ApisOBP3 and ApisOBP7). Furthermore, other odorants that can also activate ApisOR5, such as geranyl acetate, significantly repel A. pisum, as does EBF. Taken together, these data allow us to conclude that ApisOR5 is essential to EBF reception in A. pisum. The characterization of the EBF receptor allows high-throughput screening of aphid repellents, providing the necessary information to develop new strategies for aphid control.


Subject(s)
Acetates/metabolism , Aphids/metabolism , Gene Expression Regulation , Insect Proteins/metabolism , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Terpenes/metabolism , Acyclic Monoterpenes , Animals , Aphids/genetics , Aphids/growth & development , High-Throughput Screening Assays/methods , Insect Proteins/genetics , Insect Repellents/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
4.
Eur J Mass Spectrom (Chichester) ; 22(4): 193-198, 2016.
Article in English | MEDLINE | ID: mdl-27882884

ABSTRACT

Sequence protein identification by a randomized sequence database and transcriptome mass spectrometry software package has been developed at the University of Basilicata in Potenza (Italy) and designed to facilitate the determination of the amino acid sequence of a peptide as well as an unequivocal identification of proteins in a high-throughput manner with enormous advantages of time, economical resource and expertise. The software package is a valid tool for the automation of a de novo sequencing approach, overcoming the main limits and a versatile platform useful in the proteomic field for an unequivocal identification of proteins, starting from tandem mass spectrometry data. The strength of this software is that it is a user-friendly and non-statistical approach, so protein identification can be considered unambiguous.


Subject(s)
Databases, Protein , High-Throughput Screening Assays/methods , Peptide Mapping/methods , Sequence Analysis, Protein/methods , Tandem Mass Spectrometry/methods , Transcriptome , Amino Acid Sequence , Data Mining/methods , Molecular Sequence Data
5.
Insect Biochem Mol Biol ; 76: 49-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27388778

ABSTRACT

Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors.


Subject(s)
Host-Parasite Interactions , Insect Proteins/genetics , Proteome , Transcriptome , Wasp Venoms/analysis , Wasps/genetics , Animals , Insect Proteins/metabolism , Sequence Analysis, DNA , Tandem Mass Spectrometry , Wasps/metabolism
6.
Sci Rep ; 6: 24739, 2016 04 22.
Article in English | MEDLINE | ID: mdl-27102935

ABSTRACT

Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-ß-farnesene but M. viciae uses a mixture of (E)-ß-farnesene, (-)-α-pinene, ß-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.


Subject(s)
Aphids , Insect Proteins/chemistry , Insect Proteins/metabolism , Pheromones/metabolism , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Animals , Fluorometry , Kinetics , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation
7.
Biol Cell ; 108(6): 161-78, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26847147

ABSTRACT

BACKGROUND INFORMATION: While enolase is a ubiquitous metalloenzyme involved in the glycolytic pathway, it is also known as a multifunctional protein, since enolases anchored on the outer surface of the plasma membrane are involved in tissue invasion. RESULTS: We have identified an extracellular enolase (Ae-ENO) produced by the teratocytes, embryonic cells of the insect parasitoid Aphidius ervi. We demonstrate that Ae-ENO, although lacking a signal peptide, accumulates in cytoplasmic vesicles oriented towards the cell membrane. Ae-ENO binds to and activates a plasminogen-like molecule inducing digestion of the host tissue and thereby ensuring successful parasitism. CONCLUSIONS: These results support the hypothesis that plasminogen-like proteins exist in invertebrates. Interestingly the activation of a plasminogen-like protein is mediated by a mechanisms involving the surface enolase/fibrinolytic system considered, until now, exclusive of vertebrates, and that instead is conserved across species. SIGNIFICANCE: To our knowledge, this is the first example of enolase mediated Plg-like binding and activation in insect cells, demonstrating the existence of an ECM degradation process via a Plg-like protein in invertebrates.


Subject(s)
Evolution, Molecular , Extracellular Matrix/metabolism , Insect Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Plasminogen/metabolism , Wasps/metabolism , Animals , Extracellular Matrix/genetics , Insect Proteins/genetics , Phosphopyruvate Hydratase/genetics , Plasminogen/genetics , Wasps/genetics
8.
Food Chem ; 141(3): 2765-71, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23871022

ABSTRACT

Lipid transfer protein (LTP, Pru p 3) is the major allergen of peach (Prunus persica), and is in a greater abundance in the peel than in the pulp of the fruit. Peel LTP is more allergenic than pulp LTP, but it is not clear whether this is due to its specific allergenic properties or to its higher concentration. In this study, we have used a new one-step, rapid procedure for the purification of LTP from peel and pulp of four peach varieties [Gladys (white flesh), California (nectarine yellow flesh), Plusplus (yellow flesh), Red Fair (nectarine yellow flesh)] harvested in a field grown in Southern Italy. Purification was based on miniature reversed-phase chromatography, a procedure suitable for proteomic study. Proteomic analysis of purified LTPs revealed that the amino acid sequence of LTP was identical in all peach genotypes but, for the first time, peel LTP was found to be methylated.


Subject(s)
Allergens/metabolism , Antigens, Plant/chemistry , Antigens, Plant/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Prunus/metabolism , Allergens/chemistry , Fruit/chemistry , Fruit/metabolism , Mass Spectrometry , Methylation , Proteomics , Prunus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...