Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 145(1): 110-121, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36574729

ABSTRACT

Optimization of the catalyst structure to simultaneously improve multiple reaction objectives (e.g., yield, enantioselectivity, and regioselectivity) remains a formidable challenge. Herein, we describe a machine learning workflow for the multi-objective optimization of catalytic reactions that employ chiral bisphosphine ligands. This was demonstrated through the optimization of two sequential reactions required in the asymmetric synthesis of an active pharmaceutical ingredient. To accomplish this, a density functional theory-derived database of >550 bisphosphine ligands was constructed, and a designer chemical space mapping technique was established. The protocol used classification methods to identify active catalysts, followed by linear regression to model reaction selectivity. This led to the prediction and validation of significantly improved ligands for all reaction outputs, suggesting a general strategy that can be readily implemented for reaction optimizations where performance is controlled by bisphosphine ligands.


Subject(s)
Ligands , Catalysis
2.
J Am Chem Soc ; 144(45): 20955-20963, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36326518

ABSTRACT

An efficient asymmetric synthesis of a potent KRAS G12C covalent inhibitor, GDC-6036 (1), is reported. The synthesis features a highly atroposelective Negishi coupling to construct the key C-C bond between two highly functionalized pyridine and quinazoline moieties by employing a Pd/Walphos catalytic system. Statistical modeling by comparing computational descriptors of a range of Walphos chiral bisphosphine ligands to a training set of experimental results was used to inform the selection of the best ligand, W057-2, which afforded the desired Negishi coupling product (Ra)-3 in excellent selectivity. A subsequent telescoped reaction sequence of alkoxylation, global deprotection, and acrylamide formation, followed by a final adipate salt formation, furnished GDC-6036 (1) in 40% overall yield from starting materials pyridine 5 and quinazoline 6.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins p21(ras) , Linear Models , Antineoplastic Agents/pharmacology , Quinazolines/chemistry , Pyridines
3.
ACS Catal ; 9(11): 9794-9799, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31827975

ABSTRACT

The site-selective acylation of a steroidal natural product 19-hydroxydehydroepiandrosterone catalyzed by 1,1'-Bi(2-napthol)-derived (BINOL) chiral phosphoric acids (CPA's) is described. Systematic variation and multivariate linear regression analysis reveal that the same steric parameters typically needed for high enantioselectivity with this class of CPAs are also required for site-selectivity in this case. Density functional theory calculations identify additional weak CH-π interactions as contributors to site discrimination. We further report a rare example of site-selective acylation of phenols through the evaluation of naringenin, a flavonoid natural product, using CPA catalysis. These results suggest that BINOL-derived CPA's may have broader applications in site-selective catalysis.

4.
J Am Chem Soc ; 141(27): 10788-10800, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31180674

ABSTRACT

High-throughput experimentation and multivariate modeling allow identification of noncovalent interactions (NCIs) in monoaryloxy-pyrrolide Mo imido alkylidene metathesis catalysts prepared in situ as a key driver for high activity in a representative metathesis reaction (homodimerization of 1-nonene). Statistical univariate and multivariate modeling categorizes catalytic data from 35 phenolic ligands into two groups, depending on the substitution in the ortho position of the phenol ligand. The catalytic activity descriptor TON1h correlates predominantly with attractive NCIs when phenols bear ortho aryl substituents and, conversely, with repulsive NCIs when the phenol has no aryl ortho substituents. Energetic span analysis is deployed to relate the observed NCI and the cycloreversion metathesis step such that aryloxide ligands with no ortho aryls mainly impact the energy of metallacyclobutane intermediates (SP/TBP isomers), whereas aryloxides with pendant ortho aryls influence the transition state energy for the cycloreversion step. While the electronic effects from the aryloxide ligands also play a role, our work outlines how NCIs may be exploited for the design of improved d0 metathesis catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL