Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 104(1): 19-29, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19879003

ABSTRACT

The dinuclear aminopeptidase from Streptomyces griseus (SgAP) and its metal derivatives catalyze the hydrolysis of the phosphoester bis(p-nitrophenyl) phosphate (BNPP) and the phosphonate ester p-nitrophenyl phenylphosphonate with extraordinary rate enhancements at pH 7.0 and 25 degrees C [A. Ercan, H. I. Park, L.-J. Ming, Biochemistry 45, (2006) 13779-13793.], reaching 6.7 billion-fold in terms of the first-order rate constant of the di-Co(II) derivative with respect to the autohydrolytic rates. Since phosphoesters are transition state-like inhibitors in peptide hydrolysis, their hydrolysis by SgAP is quite novel. Herein, we report the investigation of this proficient alternative catalysis of SgAP and the role of each metal ion in the dinuclear site toward peptide and BNPP hydrolysis. Mn(II) selectively binds to one of the dinuclear metal sites (M1), affording MnE-SgAP with an empty (E) second site for the binding of another metal (M2), including Mn(II), Co(II), Ni(II), Zn(II), and Cd(II). Peptide hydrolysis is controlled by M2, wherein the k(cat) values for the derivatives MnM2-SgAP are different yet similar between MnCo- and CoCo-SgAP and pairs of other metal derivatives. On the other hand, BNPP hydrolysis is affected by metals in both sites. Thus, the two hydrolytic catalyses must follow different mechanisms. Based on crystal structures, docking, and the results presented herein, the M1 site is close to the hydrophobic specific site and the M2 site is next to Tyr246 that is H-bonded to a coordinated nucleophilic water molecule in peptide hydrolysis; whereas a coordinated water molecule on M1 becomes available as the nucleophile in phosphodiester hydrolysis.


Subject(s)
Aminopeptidases/chemistry , Coordination Complexes/chemistry , Nitrophenols/chemistry , Peptides/chemistry , Streptomyces griseus/enzymology , Aminopeptidases/antagonists & inhibitors , Binding Sites/physiology , Fluorides/chemistry , Hydrolysis , Ions/metabolism , Kinetics , Metals/chemistry , Metals/metabolism
2.
Article in English | MEDLINE | ID: mdl-17572125

ABSTRACT

Arginine kinase from sea urchin eggs and sea cucumber muscle are dimeric enzymes, unlike the more widely distributed monomeric enzyme found in other invertebrates. Both purified enzymes exhibited features characteristic of the monomeric arginine kinases including pH optima, formation of a catalytic dead-end complex (enzyme-MgADP-arginine) and stabilization of this complex by monovalent anions. A complete analysis of initial velocity data, in both directions for each substrate, indicated that substrate binding cooperativity was either minimal or non-existent. Unlike many other multi-subunit enzymes, the significance of the dimeric state of the phosphagen kinases remains unclear. These present results would suggest that (a) cooperativity, or so-called synergism in substrate binding is not a characteristic of the dimeric state of the protein and (b) the functional significance of the dimeric state is not related to the ability of some of these enzymes to undergo cooperativity in substrate binding. The significance of the dimeric state for the creatine kinases and arginine kinases remains to be established.


Subject(s)
Arginine Kinase/chemistry , Arginine Kinase/classification , Animals , Arginine Kinase/isolation & purification , Creatine Kinase/chemistry , Dimerization , Hydrogen-Ion Concentration , Kinetics , Multienzyme Complexes/chemistry , Protein Binding , Sea Cucumbers/enzymology , Sea Urchins/enzymology , Substrate Specificity
3.
Biochim Biophys Acta ; 1760(3): 364-71, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16386374

ABSTRACT

The antigenic and physical properties of several representative invertebrate phosphagen kinases have been examined in order to further characterize the relationship between taxonomic assignment, quaternary protein structure and evolution of this class of enzymes. Antibodies against dimeric arginine kinase from the sea cucumber cross-reacted with dimeric arginine kinase purified from sea urchin eggs, but failed to react with extracts from any species known to contain monomeric arginine kinase. However, strong immunoreactivity was observed when antibodies against purified dimeric arginine kinase were reacted with pure creatine kinase from the human muscle (CK-MM) and brain (CK-BB) as well as extracts from several species known to contain dimeric creatine kinase. Of particular interest with regard to evolution of the phosphagen kinases, we confirm the presence of creatine kinase activity in the very primitive sponge Tethya aurnatium and detect a reaction with antibodies against dimeric, but not monomeric, arginine kinase. This observation is consistent with recent studies of phosphagen kinase evolution. Substrate utilization was very specific with creatine kinase using only creatine. Arginine kinase catalyzed phosphorylation of arginine but enzymes from several species could also phosphorylate canavanine. No activities were detected with d-arginine. Isoelectric points, evaluated for several pure arginine kinases suggest that generally the monomeric forms are more acidic than the dimeric proteins. Heat inactivation of arginine kinase in several species indicated a wide range of stabilities, which did not appear to be correlated with quaternary structure, but rather distinguished by the organism's environment. On the other hand, homodimeric arginine kinase proteins from species inhabiting disparate environments are sufficiently homologous to form a catalytically active hybrid.


Subject(s)
Arginine Kinase/chemistry , Arginine Kinase/immunology , Creatine Kinase/chemistry , Creatine Kinase/immunology , Animals , Arginine Kinase/genetics , Biological Evolution , Creatine Kinase/genetics , Cross Reactions , Dimerization , Hot Temperature , Isoelectric Point , Molecular Weight , Protein Structure, Quaternary , Sea Urchins/enzymology , Substrate Specificity
4.
Arch Insect Biochem Physiol ; 57(4): 166-77, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15540275

ABSTRACT

The kinetic mechanism and evaluation of several potential inhibitors of purified arginine kinase from the cockroach (Periplanta americana) were investigated. This monomeric phosphagen kinase is important in maintaining ATP levels during the rapid energy demands of muscle required for contraction and motility. Analysis reveals the following dissociation constants (mM) for the binary complex: E.Arg P-->E+Arg P, K=1.0; E.Arg-->E+Arg, K=0.45; E.MgATP-->E+MgATP, K=0.17; E.MgADP-->E+MgADP, K=0.12; and the ternary complex: Arg P.E.MgADP-->E.MgADP+Arg P, K=0.94; Arg.E.MgATP-->E.MgATP+Arg, K=0.49; MgATP.Enz.Arg-->E.Arg+MgATP, K=0.14; MgADP.E.Arg P-->E.Arg P+MgADP, K=0.09. For a particular substrate, the ratio of the dissociation constants for the binary to ternary complex is close to one, indicating little, if any, cooperativity in substrate binding for the rapid equilibrium, random addition mechanism. The time course of the arginine kinase reaction exhibits a pronounced curvature, which, as described for enzyme from other sources, is attributed to formation of an inhibitory catalytic dead-end complex, MgADP.E.Arg. The curvature is accentuated by the addition of monovalent anions, including borate, thiocyanate, and, most notably, nitrite and nitrate. This effect is attributed to stabilization of the dead-end complex through formation of a transition state analog. However, the substantial decrease in initial velocity (92%) caused by nitrate is due to an additional inhibitory effect, further characterized as non-competitive inhibition (Ki=8.0 mM) with the substrate L-arginine. On the other hand, borate inhibition of the initial velocity is only 30% with significant subsequent curvature, suggesting that this anion functions as an inhibitor mainly by formation of a transition state analog. However, some component of the borate inhibition appears to be mediated by an apparent partial competitive inhibition with L-arginine. D-arginine is not a substrate for arginine kinase from the cockroach, but is an effective competitive inhibitor with a Ki=0.31 mM. L-Canavanine is a weak substrate for arginine kinase (Km=6.7 mM) with a Vmax for the pure enzyme that is approximately one-third that of L-arginine. However, initial velocity experiments of substrate mixtures suggest that competition between L-canavanine and L-arginine may not be a simple summation effect and may involve a structural modification. Sensitivity of arginine kinase activity to D-arginine as well as nitrate and borate anions, coupled with the fact that L-arginine is an essential amino acid for the cockroach, suggest that arginine kinase could be a useful chemotherapeutic target for the control of cockroach proliferation.


Subject(s)
Arginine Kinase/antagonists & inhibitors , Arginine Kinase/metabolism , Periplaneta/enzymology , Animals , Arginine/metabolism , Borates/metabolism , Hydrogen-Ion Concentration , Kinetics , Nitrates/metabolism , Protein Binding , Spectrophotometry
5.
Arch Insect Biochem Physiol ; 56(2): 51-60, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15146540

ABSTRACT

The isolation and characterization of homogeneous arginine kinase from the cockroach is reported. The purification protocol produces 6.6 mg of pure enzyme from 6.8 g of whole cockroach. The purified enzyme cross-reacts with a heterologous antibody and monoclonal antibody against arginine kinase from the shrimp. Both antibody preparations also cross-react with extracts from several species known to contain monomeric arginine kinase, but fail to react with extracts from organisms containing dimeric arginine kinase. Cockroach arginine kinase has a molecular mass of approximately 43,000 determined from measurements by gel filtration and gel electrophoresis. Compared with other arginine kinases, the enzyme from the cockroach is relatively thermostable (50% activity retained at 50 degrees C for 10 min) and has a pH optima of 8.5 and 6.5-7.5, for the forward and reverse reactions, respectively. Treatment with 5,5'dithiobis[2-nitrobenzoic acid] indicates that arginine kinase has a single reactive sulfhydryl group and, interestingly, the reaction is biphasic. The Michaelis constants for the phosphagen substrates, arginine: 0.49 mM, phosphoarginine: 0.94 mM, and nucleotide substrates MgATP: 0.14 mM, MgADP: 0.09 mM, are in the range reported for other arginine kinases. A 1% solution of pure enzyme has an absorbance of 7.0 at 280 nm. Calculations based on circular dichroic spectra indicate that arginine kinase from the cockroach has 12% alpha-helical structure. The intrinsic protein fluorescence emission maximum at 340 nm suggests that tryptophan residues are below the surface of the protein and not exposed to solvent. Arginine kinase from the cockroach and shrimp are known to be deleterious immunogens towards humans. The availability of pure protein, its characterization and potential regulation of activity, will be useful in developing agents to control the cockroach population and its destructive role in agriculture and human health.


Subject(s)
Arginine Kinase/isolation & purification , Arginine Kinase/metabolism , Periplaneta/enzymology , Animals , Arginine Kinase/chemistry , Catalysis , Circular Dichroism , Enzyme Stability , Hydrogen-Ion Concentration , Invertebrates/enzymology , Molecular Weight , Protein Denaturation , Protein Structure, Secondary , Temperature
6.
Biochem Biophys Res Commun ; 306(4): 1014-8, 2003 Jul 11.
Article in English | MEDLINE | ID: mdl-12821144

ABSTRACT

The time course and dose-response to proteolysis of three dimeric isozymes of creatine kinase, CK-MM (muscle), CK-BB (brain), and CK-MB (heart) and the homologous monomer, arginine kinase were compared. Chymotrypsin and trypsin cause a rapid and significant loss of intact CK-BB, but limited hydrolysis of CK-MM. After 1h of hydrolysis by chymotrypsin, 80% of CK-MM is intact as judged by quantification of monomers after electrophoresis in sodium dodecyl sulfate. While 50% of the intact monomers of CK-MB remain under these conditions, no CK-BB monomers are detected. These results indicate that treatment with chymotrypsin leads to a CK-MB devoid of the B-subunit. When treated with trypsin for 1h, CK-MM is totally resistant to hydrolysis and all CK-BB is highly degraded. However, CK-MB exhibits approximately 90% intact monomers, indicating survival of intact B-subunit in CK-MB. This suggests that heterodimerization of a B-subunit with an M-subunit may have a protective effect against hydrolysis by trypsin. In view of the considerably larger number of potentially tryptic sensitive sites on the muscle isozyme, the resistance of CK-MM and susceptibility of CK-BB dimers to trypsin implies that differences in subunit tertiary structure are a factor in proteolysis of the homodimeric isozymes. Arginine kinase is rapidly degraded by trypsin, but is minimally affected by chymotrypsin. The finding that both a monomeric (arginine kinase) and dimeric (CK-BB) phosphagen kinase are highly susceptible to proteolysis by trypsin indicates that quaternary structure is not, in and of itself, an advantage in resistance to proteolysis. Since both arginine kinase and muscle creatine kinase are resistant to chymotryptic hydrolysis, it seems unlikely that in general, the increased packing density, which may result from dimerization can account for the stability of CK-MM towards trypsin.


Subject(s)
Arginine Kinase/chemistry , Creatine Kinase/chemistry , Animals , Binding Sites , Chymotrypsin/chemistry , Chymotrypsin/pharmacology , Dimerization , Dose-Response Relationship, Drug , Hydrolysis , Protein Structure, Tertiary , Rabbits , Time Factors , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...