Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 195(2): 408-418, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537052

ABSTRACT

• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. • We investigated whether glasshouse experiments are reliable proxies for field experiments for assessing interactions between N deposition and environment as controls on Sphagnum N concentration and production. We performed a meta-analysis over 115 glasshouse experiments and 107 field experiments. • We found that glasshouse and field experiments gave similar qualitative and quantitative estimates of changes in Sphagnum N concentration in response to N application. However, glasshouse-based estimates of changes in production--even qualitative assessments-- diverged from field experiments owing to a stronger N effect on production response in absence of vascular plants in the glasshouse, and a weaker N effect on production response in presence of vascular plants compared to field experiments. • Thus, although we need glasshouse experiments to study how interacting environmental factors affect the response of Sphagnum to increased N deposition, we need field experiments to properly quantify these effects.


Subject(s)
Ecological and Environmental Phenomena , Nitrogen/pharmacology , Sphagnopsida/drug effects , Sphagnopsida/growth & development , Linear Models , Models, Biological , Plant Shoots/drug effects , Plant Shoots/physiology
2.
New Phytol ; 191(2): 496-507, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21434930

ABSTRACT

Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss. We employed meta-regressions to the results of 107 field experiments, accounting for sampling dependence in the data. We found that high N loading (comprising N application rate, experiment duration, background N deposition) depressed Sphagnum production relative to untreated controls. The interactive effects of presence of competitive vascular plants and high tissue N concentrations indicated intensified biotic interactions and altered nutrient stochiometry as mechanisms underlying the detrimental N effects. Importantly, a higher summer temperature (mean for July) and increased annual precipitation intensified the negative effects of N. The temperature effect was comparable to an experimental application of almost 4 g N m(-2) yr(-1) for each 1°C increase. Our results indicate that current rates of N deposition in a warmer environment will strongly inhibit C sequestration by Sphagnum-dominated vegetation.


Subject(s)
Carbon Sequestration/physiology , Nitrogen/metabolism , Soil/chemistry , Sphagnopsida/physiology , Bayes Theorem , Climate , Ecosystem , Linear Models , Models, Statistical , Rain , Seasons , Sphagnopsida/growth & development , Temperature , Wetlands
3.
Microb Ecol ; 46(2): 187-99, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14708744

ABSTRACT

Little is known about the structure of microbial communities in Sphagnum peatlands, and the potential effects of the increasing atmospheric CO2 concentration on these communities are not known. We analyzed the structure of microbial communities in five Sphagnum-dominated peatlands across Europe and their response to CO2 enrichment using miniFACE systems. After three growing seasons, Sphagnum samples were analyzed for heterotrophic bacteria, cyanobacteria, microalgae, heterotrophic flagellates, ciliates, testate amoebae, fungi, nematodes, and rotifers. Heterotrophic organisms dominated the microbial communities and together represented 78% to 97% of the total microbial biomass. Testate amoebae dominated the protozoan biomass. A canonical correspondence analysis revealed a significant correlation between the microbial community data and four environmental variables (Na+, DOC, water table depth, and DIN), reflecting continentality, hydrology, and nitrogen deposition gradients. Carbon dioxide enrichment modified the structure of microbial communities, but total microbial biomass was unaffected. The biomass of heterotrophic bacteria increased by 48%, and the biomass of testate amoebae decreased by 13%. These results contrast with the absence of overall effect on methane production or on the vegetation, but are in line with an increased below-ground vascular plant biomass at the same sites. We interpret the increase in bacterial biomass as a response to a CO2-induced enhancement of Sphagnum exudation. The causes for the decrease of testate amoebae are unclear but could indicate a top-down rather than a bottom-up control on their density.


Subject(s)
Carbon Dioxide/pharmacology , Greenhouse Effect , Soil Microbiology , Sphagnopsida , Amoeba , Animals , Biomass , Methane/analysis , Population Dynamics
4.
Microb Ecol ; 39(4): 290-300, 2000 May.
Article in English | MEDLINE | ID: mdl-10882434

ABSTRACT

The distribution of soil microorganisms is generally believed to be patchy and to reflect habitat heterogeneity. Despite this general rule, the amount of existing data on species distribution patterns is scarce. Testate amoebae (Protozoa; Rhizopoda) are an important component of soil microbial communities and are increasingly used in ecological and paleoecological studies of Sphagnum-dominated peatlands, but data on the spatial structure of communities are completely lacking. This is an important aspect since quantitative models used for paleoecological reconstruction and monitoring are based on species assemblages. We explored the distribution patterns of testate amoebae distribution in a macroscopically homogeneous Sphagnum carpet, down to a scale of several centimeters. Distributions maps of the species and spatially constrained sample groups were produced. Multivariate and individual spatial autocorrelations were calculated. The importance of spatial structure was quantified by canonical correspondence analysis. Our ultimate goal is to find the finest resolution of environmental monitoring using testate amoebae. The distribution patterns differed among species, resulting in a complex spatial structure of the species assemblage in a whole. Spatial structure accounted for 36% of the total variation of species abundance in a canonical correspondence analysis constrained by spatial variables. This structure was partly correlated to altitude (microtopography) at a very fine scale. These results confirmed the existence of significant broad- and fine-scale spatial structures within testate amoebae communities that could in part be interpreted as effects of ecological gradients. This shows that, on a surface area of 0.25 m(2), ecological conditions which look uniform from a macroscopic point of view are not perceived as such by Sphagnum-inhabiting organisms. Therefore, testate amoebae could prove very useful to monitor fine-scale ecological processes or disturbances. Studies of the species' spatial distribution patterns in combination with autoecological studies are needed and should be included in the toolbox of biomonitoring itself.

5.
New Phytol ; 140(2): 355-360, 1998 Oct.
Article in English | MEDLINE | ID: mdl-33862851

ABSTRACT

The sampler extracts uncompressed cores of 13·3 cm in diameter, up to 70 cm long, from the surface layers of peat. It has two close-fitting concentric cylindrical tubes, the outer one acting as a cutter and the inner one as a collector. As the outer tube is introduced by rotation into the peat, the cut core is collected in the inner tube which is maintained in a fixed position during the rotation phase and then pushed down stepwise. This limits friction between the peat core and the wall of the corer and prevents compression or distortion of the peat. These problems are also reduced by means of three skew cutters allowing the peat to be supported during the slicing action. Air can penetrate between the tubes to the lower end of the core, suppressing any suction effect during withdrawal. The sampler has been tested and has worked satisfactorily in many different peat types.

SELECTION OF CITATIONS
SEARCH DETAIL
...