Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foot (Edinb) ; 56: 102028, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37011454

ABSTRACT

CONTEXT: Achilles tendon (AT) injuries are common in female runners and military personnel where increased AT loading may be a contributing factor. Few studies have examined AT stress during running with added mass. The purpose was to examine the stress, strain, and force placed on the AT, kinematics and temporospatial variable in running with different amounts of added mass. DESIGN: Repeated measure design METHODS: Twenty-three female runners with a rear-foot strike pattern were participants. AT stress, strain, and force were measured during running using a musculoskeletal model that used kinematic (180 Hz) and kinetic data (1800 Hz) as input. Ultrasound data were used to measure AT cross sectional area. A repeated measures multivariate analysis of variance (α = 0.05) was used on AT loading variables, kinematics and temporospatial variables. RESULTS: Peak AT stress, strain, and force were greatest during the 9.0 kg added load running condition (p < .0001). There was a 4.3% and 8.8% increase in AT stress and strain during the 4.5 kg and 9.0 kg added load conditions, respectively, compared to baseline. Kinematics at the hip and knee changed with added load but not at the ankle. Small changes in temporospatial variables were seen. CONCLUSION: Added load increased stress on the AT during running. There may be an increased risk for AT injury with added load. Individuals may consider slowly progressing training with added load to allow for increased AT loading.


Subject(s)
Achilles Tendon , Humans , Female , Achilles Tendon/diagnostic imaging , Ankle , Foot , Lower Extremity , Ankle Joint , Biomechanical Phenomena
2.
J Ind Microbiol Biotechnol ; 38(5): 607-15, 2011 May.
Article in English | MEDLINE | ID: mdl-20714781

ABSTRACT

Cyathin A(3), produced by the fungus Cyathus helenae, is a member of the cyathane family of diterpene natural products. While many of the cyathanes display antibacterial/antimicrobial activity or have cytotoxic activity against human cancer cell lines, their most exciting therapeutic potential is derived from their ability to induce nerve growth factor (NGF) release from glial cells, making the cyathanes attractive lead molecules for the development of neuroprotective therapeutics to prevent/treat Alzheimer's disease. To investigate if cyathin A(3) has NGF-inducing activity, we set out to obtain it using published C. helenae bench-scale fungal fermentations. However, to overcome nonproducing fermentations, we developed an alternative, bacteria-induced static batch fermentation approach to the production of cyathin A(3), as described in this report. HPLC, UV absorption spectra, and mass spectrometry identify cyathin A(3) in fungal fermentations induced by the timely addition of Escherichia coli K12 or Bacillus megabacterium. Pre-filtration of the bacterial culture abolishes cyathin A(3) induction, suggesting that bacteria-associated media changes or physical interaction between the fungus and bacteria underlie the induction mechanism. Through alteration of incubation conditions, including agitation, the timing of induction, and media composition, we optimized the fermentation to yield nearly 1 mg cyathin A(3)/ml media, a sixfold increase over previously described yields. Additionally, by comparison of fermentation profiles, we reveal that cyathin A(3) biosynthesis is regulated by carbon catabolite repression. We have used an enzyme-linked immunosorbent assay to illustrate that cyathin A(3) induces NGF release from cultured glial cells, and therefore cyathin A(3) warrants further examination in the development of neuroprotective therapeutics.


Subject(s)
Cyathus/metabolism , Diterpenes/pharmacology , Fermentation , Nerve Growth Factor/metabolism , Bacillus megaterium/physiology , Cell Line, Tumor , Diterpenes/chemistry , Diterpenes/metabolism , Enzyme-Linked Immunosorbent Assay , Escherichia coli K12/physiology , Humans , Microbial Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...