Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 107(2): 323-339, 2020 02.
Article in English | MEDLINE | ID: mdl-31749181

ABSTRACT

Myeloid lineage cells present in human peripheral blood include dendritic cells (DC) and monocytes. The DC are identified phenotypically as HLA-DR+ cells that lack major cell surface lineage markers for T cells (CD3), B cells (CD19, CD20), NK cells (CD56), red blood cells (CD235a), hematopoietic stem cells (CD34), and Mo that express CD14. Both DC and Mo can be phenotypically divided into subsets. DC are divided into plasmacytoid DC, which are CD11c- , CD304+ , CD85g+ , and myeloid DC that are CD11c+ . The CD11c+ DC are readily classified as CD1c+ DC and CD141+ DC. Monocytes are broadly divided into the CD14+ CD16- (classical) and CD14dim CD16+ subsets (nonclassical). A population of myeloid-derived cells that have DC characteristics, that is, HLA-DR+ and lacking lineage markers including CD14, but express CD16 are generally clustered with CD14dim CD16+ monocytes. We used high-dimensional clustering analyses of fluorescence and mass cytometry data, to delineate CD14+ monocytes, CD14dim CD16+ monocytes (CD16+ Mo), and CD14- CD16+ DC (CD16+ DC). We sought to identify the functional and kinetic relationship of CD16+ DC to CD16+ Mo. We demonstrate that differentiation of CD16+ DC and CD16+ Mo during activation with IFNγ in vitro and as a result of an allo-hematopoietic cell transplant (HCT) in vivo resulted in distinct populations. Recovery of blood CD16+ DC in both auto- and allo-(HCT) patients after myeloablative conditioning showed similar reconstitution and activation kinetics to CD16+ Mo. Finally, we show that expression of the cell surface markers CD300c, CCR5, and CLEC5a can distinguish the cell populations phenotypically paving the way for functional differentiation as new reagents become available.


Subject(s)
Antigen-Presenting Cells/immunology , Biomarkers/analysis , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Monocytes/immunology , Myeloid Cells/immunology , Receptors, IgG/metabolism , Antigen-Presenting Cells/metabolism , Antigens, Surface/metabolism , Cell Differentiation , Cell Lineage , Dendritic Cells/metabolism , GPI-Linked Proteins/metabolism , Graft vs Host Disease/diagnosis , Graft vs Host Disease/metabolism , HLA-DR Antigens/metabolism , Hematopoietic Stem Cell Transplantation , Humans , Lectins, C-Type/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Membrane Glycoproteins/metabolism , Monocytes/metabolism , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Myeloid Cells/metabolism , Receptors, CCR5/metabolism , Receptors, Cell Surface/metabolism , Transplantation, Homologous
2.
Oncoimmunology ; 7(4): e1419114, 2018.
Article in English | MEDLINE | ID: mdl-29632738

ABSTRACT

Only modest advances in AML therapy have occurred in the past decade and relapse due to residual disease remains the major challenge. The potential of the immune system to address this is evident in the success of allogeneic transplantation, however this leads to considerable morbidity. Dendritic cell (DC) vaccination can generate leukemia-specific autologous immunity with little toxicity. Promising results have been achieved with vaccines developed in vitro from purified monocytes (Mo-DC). We now demonstrate that blood DC (BDC) have superior function to Mo-DC. Whilst BDC are reduced at diagnosis in AML, they recover following chemotherapy and allogeneic transplantation, can be purified using CMRF-56 antibody technology, and can stimulate functional T cell responses. While most AML patients in remission had a relatively normal T cell landscape, those who had received fludarabine as salvage therapy have persistent T cell abnormalities including reduced number, altered subset distribution, failure to expand, and increased activation-induced cell death. Furthermore, PD-1 and TIM-3 are increased on CD4T cells in AML patients in remission and their blockade enhances the expansion of leukemia-specific T cells. This confirms the feasibility of a BDC vaccine to consolidate remission in AML and suggests it should be tested in conjunction with checkpoint blockade.

SELECTION OF CITATIONS
SEARCH DETAIL
...