Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Announc ; 6(24)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29903813

ABSTRACT

We report here the complete genome of an isolate of piscine orthoreovirus variant 3 sequenced from a moribund coho salmon with jaundice that was reared in a seawater farm in southern Chile. The genome consists of 23,627 bp, including 10 segments that range from 1,052 bp (segment S4) to 4,014 bp (segment L1).

2.
Genome Announc ; 5(5)2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28153906

ABSTRACT

The amount of antibiotics needed to counteract frequent piscirickettsiosis outbreaks is a major concern for the Chilean salmon industry. Resistance to antibiotics may contribute to this issue. To understand the genetics underlying Piscirickettsia salmonis-resistant phenotypes, the genome of AY3800B, an oxytetracycline-resistant isolate bearing a multidrug resistance plasmid, is presented here.

3.
Genome Announc ; 4(1)2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26893432

ABSTRACT

Tenacibaculum-like bacilli have recently been isolated from diseased sea-reared Atlantic salmon in outbreaks that took place in the XI region (Región de Aysén) of Chile. Molecular typing identified the bacterium as Tenacibaculum dicentrarchi. Here, we report the complete genome sequence of the AY7486TD isolate recovered during those outbreaks.

4.
Genome Announc ; 2(6)2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25523762

ABSTRACT

Outbreaks caused by Piscirickettsia salmonis are one of the major threats to the sustainability of the Chilean salmon industry. We report here the annotated draft genomes of two P. salmonis isolates recovered from different salmonid species. A comparative analysis showed that the number of virulence-associated secretion systems constitutes a main genomic difference.

5.
Genome Announc ; 2(4)2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25169862

ABSTRACT

We sequenced the genome of a motile O1b Yersinia ruckeri field isolate from Chile, which is causing enteric redmouth disease (ERM) in vaccinated Atlantic salmon (Salmo salar). The draft genome has 3,775,486 bp, a G+C content of 47.1%, and is predicted to contain 3,406 coding sequences.

6.
BMC Vet Res ; 9: 183, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24040749

ABSTRACT

BACKGROUND: The detection of pathogens at early stages of infection is a key point for disease control in aquaculture. Therefore, accurate diagnostic procedures are a must. Real-time PCR has been a mainstay in diagnostics over the years due to its speed, specificity, sensitivity, reproducibility and throughput; as such, real-time PCR is a target for improvement. Nevertheless, to validate a novel diagnostic tool, correct setup of the assay, including proper endogenous controls to evaluate the quantity and quality of the samples and to detect possible sample degradation, is compulsory. This work aims to design a unique RT-qPCR assay for pathogen detection in the three salmonid species reared in Chile. The assay uses elongation factor 1 alpha as the single endogenous control, thus avoiding the need for multiple endogenous controls, as well as multiple validations and non-comparable quality control parameters. RESULTS: The in vivo and in vitro analyses of samples from Salmo salar, Oncorhynchus mykiss and Oncorhynchus kisutch showed that when primers were accurately selected to target conserved regions of the elongation factor 1 alpha (ELF1α) gene, a single novel RT-qPCR assay yielding similar and reproducible Ct values between the three species could be designed. The opposite occurred when an assay originally designed for Salmo salar was tested in samples from the two species of the genus Oncorhynchus. CONCLUSIONS: Here, we report the design and evaluation of an accurate trans-species RT-qPCR assay that uses the elongation factor 1 alpha (ELF1α) gene as an endogenous control and is applicable for diagnostic purposes in samples obtained from the three salmonid species reared in Chile.


Subject(s)
Fish Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Salmonidae/classification , Animals , Base Sequence , Genetic Variation , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Quality Control , Reproducibility of Results , Sequence Alignment , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL