Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Macromol Rapid Commun ; 43(12): e2100620, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34874586

ABSTRACT

A kinetic model based on fundamentals of radical polymerization and literature known rate parameters for the polymerization of n-butyl acrylate is validated against molecular analysis and rheological data. The model is used to predict conversion, molar mass distribution, and branching densities in form of short and long chain branching. Rheological measurements of synthesized model polymers are evaluated along the Carreau-Yasuda and Van Gurp-Palmen presentations, allowing to detect small differences in the degree of long chain branching. Contributions of anharmonics to viscoelastic response in large amplitude oscillations are small and differences between the products are dominated by the differences in molar mass.


Subject(s)
Acrylates , Laos , Polymers , Rheology
2.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339200

ABSTRACT

Goethite is a naturally anisotropic, antiferromagnetic iron oxide. Following its atomic structure, crystals grow into a fine needle shape that has interesting properties in a magnetic field. The needles align parallel to weak magnetic fields and perpendicular when subjected to high fields. We synthesized goethite nanorods with lengths between 200 nm and 650 nm in a two-step process. In a first step we synthesized precursor particles made of akaganeite (ß-FeOOH) rods from iron(III)chloride. The precursors were then treated in a hydrothermal reactor under alkaline conditions with NaOH and polyvinylpyrrolidone (PVP) to form goethite needles. The aspect ratio was tunable between 8 and 15, based on the conditions during hydrothermal treatment. The orientation of these particles in a magnetic field was investigated by small angle X-ray scattering (SAXS). We observed that the field strength required to trigger a reorientation is dependent on the length and aspect ratio of the particles and could be shifted from 85 mT for the small particles to about 147 mT for the large particles. These particles could provide highly interesting magnetic properties to nanocomposites, that could then be used for sensing applications or membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...