Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Geophys Res Atmos ; 125(21): e2020JD033421, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33391965

ABSTRACT

Filaments of intense vapor transport called atmospheric rivers (ARs) are responsible for the majority of poleward vapor transport in the midlatitudes. Despite their importance to the hydrologic cycle, there remain many unanswered questions about changes to ARs in a warming climate. In this study we perform a series of escalating uniform SST increases (+2, +4, and +6K, respectively) in the Community Atmosphere Model version 5 in an aquaplanet configuration to evaluate the thermodynamic and dynamical response of AR vapor content, transport, and precipitation to warming SSTs. We find that AR column integrated water vapor (IWV) is especially sensitive to SST and increases by 6.3-9.7% per degree warming despite decreasing relative humidity through much of the column. Further analysis provides a more nuanced view of AR IWV changes: Since SST warming is modest compared to that in the midtroposphere, computing fractional changes in IWV with respect to SST results in finding spuriously large increases. Meanwhile, results here show that AR IWV transport increases relatively uniformly with temperature and at consistently lower rates than IWV, as modulated by systematically decreasing low-level wind speeds. Similarly, changes in AR precipitation are related to a compensatory relationship between enhanced near-surface moisture and damped vertical motions.

2.
Sci Rep ; 8(1): 11146, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042424

ABSTRACT

Warming is a major climate change concern, but the impact of high maximum temperatures depends upon the air's moisture content. Trends in maximum summertime temperature, moisture, and heat index are tracked over three time periods: 1900-2011, 1950-2011, and 1979-2011; these trends differ notably from annual temperature trends. Trends are emphasized from two CRU datasets (CRUTS3.25 and CRUTS4.01) and two reanalyses (ERA-20C and 20CRv2). Maximum temperature trends tend towards warming that is stronger over the Great Lakes, the interior western and the northeastern contiguous United States. A warming hole in the Midwest generally decreases in size and magnitude when heat stress trends are calculated because the region has increasing moisture. CRU and nearly all reanalyses find cooling in the northern high plains that is not found in NOAA Climate Division trends. These NOAA trends are captured better by CRUTS401. Moistening in the northeast amplifies the heat stress there. Elsewhere the moisture trends are less clear. Drying over northern Texas (after 1996) in CRUTS401 translates into decreasing heat stress there (less so in CRUTS325). Though other reanalyses are not intended for long-term trends, MERRA-2 and ERA-Interim match observed trends better than other reanalyses.

SELECTION OF CITATIONS
SEARCH DETAIL