Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med ; 22: 300-309, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27264265

ABSTRACT

Rationale: Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. Objectives: 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. Results: We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Conclusions: Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.

2.
BMC Cancer ; 15: 841, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26530098

ABSTRACT

BACKGROUND: Retinoblastoma (RB) is the most common malignant childhood tumor of the eye and results from inactivation of both alleles of the RB1 gene. Nowadays RB genetic diagnosis requires classical chromosome investigations, Multiplex Ligation-dependent Probe Amplification analysis (MLPA) and Sanger sequencing. Nevertheless, these techniques show some limitations. We report our experience on a cohort of RB patients using a combined approach of Next-Generation Sequencing (NGS) and RB1 custom array-Comparative Genomic Hybridization (aCGH). METHODS: A total of 65 patients with retinoblastoma were studied: 29 cases of bilateral RB and 36 cases of unilateral RB. All patients were previously tested with conventional cytogenetics and MLPA techniques. Fifty-three samples were then analysed using NGS. Eleven cases were analysed by RB1 custom aCGH. One last case was studied only by classic cytogenetics. Finally, it has been tested, in a lab sensitivity assay, the capability of NGS to detect artificial mosaicism series in previously recognized samples prepared at 3 different mosaicism frequencies: 10, 5, 1 %. RESULTS: Of the 29 cases of bilateral RB, 28 resulted positive (96.5 %) to the genetic investigation: 22 point mutations and 6 genomic rearrangements (four intragenic and two macrodeletion). A novel germline intragenic duplication, from exon18 to exon 23, was identified in a proband with bilateral RB. Of the 36 available cases of unilateral RB, 8 patients resulted positive (22 %) to the genetic investigation: 3 patients showed point mutations while 5 carried large deletion. Finally, we successfully validated, in a lab sensitivity assay, the capability of NGS to accurately measure level of artificial mosaicism down to 1 %. CONCLUSIONS: NGS and RB1-custom aCGH have demonstrated to be an effective combined approach in order to optimize the overall diagnostic procedures of RB. Custom aCGH is able to accurately detect genomic rearrangements allowing the characterization of their extension. NGS is extremely accurate in detecting single nucleotide variants, relatively simple to perform, cost savings and efficient and has confirmed a high sensitivity and accuracy in identifying low levels of artificial mosaicisms.


Subject(s)
High-Throughput Nucleotide Sequencing , Pathology, Molecular , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , Alleles , Chromosome Aberrations , Comparative Genomic Hybridization , Exons/genetics , Female , Gene Deletion , Humans , Male , Mutation , Retinoblastoma/diagnosis , Retinoblastoma/pathology
3.
J Mol Diagn ; 17(2): 171-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25636364

ABSTRACT

Cystic fibrosis (CF), the most common autosomal recessive disease in whites, is caused by mutations in the CF transmembrane conductance regulator (CFTR). So far, >1900 mutations have been described, most of which are nonsense, missense, and frameshift, and can lead to severe phenotypes, reducing the level of function of the CFTR protein. Synonymous variations are usually considered silent without pathogenic effects. However, synonymous mutations exhibiting exon skipping as a consequence of aberrant splicing of pre-mRNA differ. Herein, we describe the effect of the aberrant splicing of the c.273G>C (G91G) synonymous variation found in a 9-year-old white (ΔF508) patient affected by CF and pancreatitis associated with a variant in chymotrypsin C (CTRC). Magnetic resonance imaging showed an atrophic pancreatic gland with substitution of the pancreatic parenchyma with three cysts. Genetic examination revealed compound heterozygosity for the c.1521_1523delCTT (ΔF508) pathogenic variant and the c.273G>C (G91G) variant in CFTR. Sweat test results confirmed the diagnosis of CF. We have thus identified a synonymous variation (G91G) causing the skipping of exon 3 in a CF patient carrying the ΔF508 mutation. However, the clinical phenotype with pancreatic symptoms encouraged us to investigate a panel of pancreas-related genes, which resulted in finding a known sequence variation inside CTRC. We further discuss the role of these variants and their possible interactions in determining the current phenotype.


Subject(s)
Chymotrypsin/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Pancreatitis, Chronic/genetics , Child , Humans , Late Onset Disorders/genetics , Male
4.
Epigenetics Chromatin ; 7(1): 1, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24393457

ABSTRACT

BACKGROUND: Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. RESULTS: The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. CONCLUSIONS: Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.

5.
BMC Med Genet ; 15: 14, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24451042

ABSTRACT

BACKGROUND: Noonan syndrome is an autosomal dominant developmental disorder with a high phenotypic variability, which shares clinical features with other rare conditions, including LEOPARD syndrome, cardiofaciocutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. This group of related disorders, so-called RASopathies, is caused by germline mutations in distinct genes encoding for components of the RAS-MAPK signalling pathway. Due to high number of genes associated with these disorders, standard diagnostic testing requires expensive and time consuming approaches using Sanger sequencing. In this study we show how targeted Next Generation Sequencing (NGS) technique can enable accurate, faster and cost-effective diagnosis of RASopathies. METHODS: In this study we used a validation set of 10 patients (6 positive controls previously characterized by Sanger-sequencing and 4 negative controls) to assess the analytical sensitivity and specificity of the targeted NGS. As second step, a training set of 80 enrolled patients with a clinical suspect of RASopathies has been tested. Targeted NGS has been successfully applied over 92% of the regions of interest, including exons for the following genes: PTPN11, SOS1, RAF1, BRAF, HRAS, KRAS, NRAS, SHOC, MAP2K1, MAP2K2, CBL. RESULTS: All expected variants in patients belonging to the validation set have been identified by targeted NGS providing a detection rate of 100%. Furthermore, all the newly detected mutations in patients from the training set have been confirmed by Sanger sequencing. Absence of any false negative event has been excluded by testing some of the negative patients, randomly selected, with Sanger sequencing. CONCLUSION: Here we show how molecular testing of RASopathies by targeted NGS could allow an early and accurate diagnosis for all enrolled patients, enabling a prompt diagnosis especially for those patients with mild, non-specific or atypical features, in whom the detection of the causative mutation usually requires prolonged diagnostic timings when using standard routine. This approach strongly improved genetic counselling and clinical management.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Female , Genomics , Humans , Infant , Male , Mutation , Reproducibility of Results
6.
BMC Med Genomics ; 6: 3, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23398904

ABSTRACT

BACKGROUND: Ring chromosome 6 is a rare constitutional abnormality that generally occurs de novo. The related phenotype may be highly variable ranging from an almost normal phenotype to severe malformations and mental retardation. These features are mainly present when genetic material at the end of the chromosome is lost. The severity of the phenotype seems to be related to the size of the deletion. About 25 cases have been described to date, but the vast majority reports only conventional cytogenetic investigations. CASE PRESENTATION: Here we present an accurate cyto-molecular characterization of a ring chromosome 6 in a 16-months-old Caucasian girl with mild motor developmental delay, cardiac defect, and facial anomalies. The cytogenetic investigations showed a karyotype 46,XX,r(6)(p25q27) and FISH analysis revealed the absence of the signals on both arms of the chromosome 6. These results were confirmed by means of array-CGH showing terminal deletions on 6p25.3 (1.3 Mb) and 6q26.27 (6.7 Mb). Our data were compared to current literature. CONCLUSIONS: Our report describes the case of a patient with a ring chromosome 6 abnormality completely characterized by array CGH which provided additional information for genotype-phenotype studies.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Disorders , Comparative Genomic Hybridization , Ring Chromosomes , Chromosomes, Human, Pair 6 , Female , Gene Deletion , Genotype , Humans , Infant , Karyotyping , Oligonucleotide Array Sequence Analysis , Phenotype
7.
Cancer Genet ; 206(11): 398-401, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24412019

ABSTRACT

Retinoblastoma (RB) is the most common eye tumor in children; it originates from germline and/or somatic mutations that inactivate both alleles of the RB1 gene located on chromosome 13q14. Patients with unilateral or bilateral RB infrequently may develop an additional intracranial neuroblastic tumor, usually in the pineal gland, which characterizes the trilateral retinoblastoma (TRB) syndrome. The most common chromosomal abnormalities detected in TRB are deletions at 13q14, even if some rare cases of RB1 point mutations were described. In our report, we investigated two patients with TRB who showed a germline RB1 point mutation that has never been found to date and a large deletion involving RB1, respectively. Genetic data were compared to our in-house series and to current literature; these data suggested a role for other candidate regions in the pathogenesis of TRB. Moreover, our study highlights the need for new approaches allowing a multigenic analysis to clarify the genotype-phenotype correlation in TRB.


Subject(s)
Retinoblastoma/genetics , Child , Child, Preschool , Cytogenetics , Female , Genetic Association Studies , Humans , Infant , Male , Nucleic Acid Hybridization , Retinoblastoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...