Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 20(1): 16, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30841920

ABSTRACT

BACKGROUND: The development of heart failure is accompanied by complex changes in cardiac electrophysiology and functional properties of cardiomyocytes and fibroblasts. Histone deacetylase (HDAC) inhibitors hold great promise for the pharmaceutical therapy of several malignant diseases. Here, we describe novel effects of the class I HDAC inhibitor Entinostat on electrical and structural remodeling in an in vivo model of pacing induced heart failure. METHODS: Rabbits were implanted a pacemaker system, subjected to rapid ventricular pacing and treated with Entinostat or placebo, respectively. Following stimulation, rabbit hearts were explanted and subsequently subjected to electrophysiological studies and further immunohistological analyses of left ventricles. RESULTS: In vivo, rapid ventricular stimulation caused a significant prolongation of monophasic action potential duration compared to sham hearts (from 173 ± 26 ms to 250 ± 41 ms; cycle length 900 ms; p < 0.05) and an increased incidence of Early afterdepolarisations (+ 150%), while treatment with Entinostat in failing hearts could partially prevent this effect (from 250 ± 41 ms to 170 ± 53 ms, p < 0.05; reduction in EAD by 50%). Entinostat treatment partially restored KCNH2 and Cav1.3 gene expressions in failing hearts, and inhibited the development of cardiac fibrosis in vivo. CONCLUSION: In a rabbit model of heart failure, Entinostat diminishes heart failure related prolongation of repolarization and partially restores KCNH2 and Cav1.3 expression. In addition, Entinostat exerts antifibrotic properties both in vitro and in vivo. Thus, Entinostat might be an interesting candidate for the pharmaceutical therapy of heart failure directed against structural and electrical remodeling.


Subject(s)
Benzamides/pharmacology , Heart Failure/pathology , Histone Deacetylase Inhibitors/pharmacology , Pyridines/pharmacology , Ventricular Remodeling/drug effects , Action Potentials , Animals , Calcium Channels, L-Type/physiology , ERG1 Potassium Channel/physiology , Female , Fibrosis , Heart/drug effects , Heart/physiology , Heart Failure/physiopathology , Myocardium/pathology , Rabbits
2.
Europace ; 16(8): 1240-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24696223

ABSTRACT

AIM: The most recent European Society of Cardiology (ESC) update on atrial fibrillation has introduced vernakalant (VER) for pharmacological cardioversion of atrial fibrillation. The aim of the present study was to investigate the safety profile of VER in a sensitive model of proarrhythmia. METHODS AND RESULTS: In 36 Langendorff-perfused rabbit hearts, VER (10, 30 µM, n = 12); ranolazine (RAN, 10, 30 µM, n = 12), or sotalol (SOT, 50; 100 µM, n = 12) were infused after obtaining baseline data. Monophasic action potentials and a 12-lead electrocardiogram showed a significant QT prolongation after application of VER as compared with baseline (10 µM: +25 ms, 30 µM: +50 ms, P < 0.05) accompanied by an increase of action potential duration (APD). The increase in APD90 was accompanied by a more marked increase in effective refractory period (ERP) leading to a significant increase in post-repolarization refractoriness (PRR, 10 µM: +30 ms, 30 µM: +36 ms, P < 0.05). Vernakalant did not affect the dispersion of repolarization. Lowered potassium concentration in bradycardic hearts did not provoke early afterdepolarizations (EADs) or polymorphic ventricular tachycardia (pVT). Comparable results were obtained with RAN. Hundred micromolars of SOT led to an increase in QT interval (+49 ms) and APD90 combined with an increased ERP and PRR (+23 ms). In contrast to VER, 100 µM SOT led to a significant increase in dispersion of repolarization and to the occurrence of EAD in 10 of 12 and pVT in 8 of 12 hearts. CONCLUSION: In the present study, application of VER and SOT led to a comparable prolongation of myocardial repolarization. Both drugs increased the PRR. However, VER neither affect the dispersion of repolarization nor induce EAD and therefore did not cause proarrhythmia.


Subject(s)
Anisoles/toxicity , Anti-Arrhythmia Agents/toxicity , Arrhythmias, Cardiac/chemically induced , Electrophysiologic Techniques, Cardiac , Heart Conduction System/drug effects , Pyrrolidines/toxicity , Acetanilides/toxicity , Action Potentials , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Heart Conduction System/physiopathology , In Vitro Techniques , Models, Animal , Perfusion , Piperazines/toxicity , Potassium Channel Blockers/toxicity , Rabbits , Ranolazine , Risk Assessment , Risk Factors , Sodium Channel Blockers/toxicity , Sotalol/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...