Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
2.
J Biol Chem ; 286(20): 17870-8, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21454523

ABSTRACT

The ß-globin locus undergoes dynamic chromatin interaction changes in differentiating erythroid cells that are thought to be important for proper globin gene expression. However, the underlying mechanisms are unclear. The CCCTC-binding factor, CTCF, binds to the insulator elements at the 5' and 3' boundaries of the locus, but these sites were shown to be dispensable for globin gene activation. We found that, upon induction of differentiation, cohesin and the cohesin loading factor Nipped-B-like (Nipbl) bind to the locus control region (LCR) at the CTCF insulator and distal enhancer regions as well as at the specific target globin gene that undergoes activation upon differentiation. Nipbl-dependent cohesin binding is critical for long-range chromatin interactions, both between the CTCF insulator elements and between the LCR distal enhancer and the target gene. We show that the latter interaction is important for globin gene expression in vivo and in vitro. Furthermore, the results indicate that such cohesin-mediated chromatin interactions associated with gene regulation are sensitive to the partial reduction of Nipbl caused by heterozygous mutation. This provides the first direct evidence that Nipbl haploinsufficiency affects cohesin-mediated chromatin interactions and gene expression. Our results reveal that dynamic Nipbl/cohesin binding is critical for developmental chromatin organization and the gene activation function of the LCR in mammalian cells.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic/physiology , Gene Expression Regulation/physiology , Insulator Elements/physiology , beta-Globins/biosynthesis , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , K562 Cells , Mice , Mutation , Proteins/genetics , Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , beta-Globins/genetics , Cohesins
3.
Proc Natl Acad Sci U S A ; 100(3): 1111-5, 2003 Feb 04.
Article in English | MEDLINE | ID: mdl-12525692

ABSTRACT

Mammalian beta-globin loci contain multiple beta-like genes that are expressed at different times during development. The murine beta-globin locus contains two genes expressed during the embryo stage, Ey and betah1, and two genes expressed at both the fetal and postnatal stages, beta-major and beta-minor. Studies of transgenic human beta-like globin loci in mice have suggested that expression of one gene at the locus will suppress expression of other genes at the locus. To test this hypothesis we produced mouse lines with deletions of either the Ey or betah1 promoter in the endogenous murine beta-globin locus. Promoter deletion eliminated expression of the mutant gene but did not affect expression of the remaining embryonic gene or the fetal-adult beta-globin genes on the mutant allele. These results demonstrate a lack of competitive effects between individual mouse embryonic beta-globin gene promoters and other genes in the locus. The implication of these findings for models of beta-globin gene expression are discussed.


Subject(s)
Globins/genetics , Promoter Regions, Genetic , Alleles , Animals , Blotting, Southern , Chromatography, High Pressure Liquid , Gene Deletion , Genetic Vectors , Humans , Mice , Models, Genetic , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...