Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 59(6): 1435-44, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20299467

ABSTRACT

OBJECTIVE: Generating functional beta-cells by inducing their proliferation may provide new perspectives for cell therapy in diabetes. Transcription factor E2F1 controls G(1)- to S-phase transition during the cycling of many cell types and is required for pancreatic beta-cell growth and function. However, the consequences of overexpression of E2F1 in beta-cells are unknown. RESEARCH DESIGN AND METHODS: The effects of E2F1 overexpression on beta-cell proliferation and function were analyzed in isolated rat beta-cells and in transgenic mice. RESULTS: Adenovirus AdE2F1-mediated overexpression of E2F1 increased the proliferation of isolated primary rat beta-cells 20-fold but also enhanced beta-cell death. Coinfection with adenovirus AdAkt expressing a constitutively active form of Akt (protein kinase B) suppressed beta-cell death to control levels. At 48 h after infection, the total beta-cell number and insulin content were, respectively, 46 and 79% higher in AdE2F1+AdAkt-infected cultures compared with untreated. Conditional overexpression of E2F1 in mice resulted in a twofold increase of beta-cell proliferation and a 70% increase of pancreatic insulin content, but did not increase beta-cell mass. Glucose-challenged insulin release was increased, and the mice showed protection against toxin-induced diabetes. CONCLUSIONS: Overexpression of E2F1, either in vitro or in vivo, can stimulate beta-cell proliferation activity. In vivo E2F1 expression significantly increases the insulin content and function of adult beta-cells, making it a strategic target for therapeutic manipulation of beta-cell function.


Subject(s)
E2F1 Transcription Factor/genetics , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/physiology , Animals , Cell Cycle/physiology , Cell Death , Cell Division , E2F1 Transcription Factor/deficiency , Gene Expression Regulation , Immunohistochemistry , Male , Mice , Mice, Knockout , Mice, Transgenic , Pancreas/anatomy & histology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...