Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 110(12): 2763-2778, 2022 12.
Article in English | MEDLINE | ID: mdl-35729868

ABSTRACT

Nitinol (NiTi), a nickel-titanium alloy, has been used for various cardiovascular, orthopedic, fracture fixation, and orthodontic devices. As with most other metallic biomaterials, the corrosion resistance and biocompatibility of NiTi are primarily determined by the properties of the surface oxide layer such as thickness, chemical composition, structure, uniformity, and stability. Currently, a number of finishing methods are used to improve the properties of surface oxide of NiTi with an ultimate goal to produce a defect-free, impurity-free, thin homogeneous oxide layer that is stable and composed of only titanium dioxide (TiO2 ) with negligible amount of Ni species. This review discusses the effects of various surface finishing methods such as mechanical polishing, electropolishing, magnetoelectropolishing, heat treatments at different temperatures, passivation, chemical etching, boiling in water, hydrogen peroxide treatment, and sterilization techniques (steam autoclave, ethylene oxide, dry heat, peracetic acid, and plasma-based treatments) on the properties of a surface oxide layer and how it impacts the corrosion resistance of NiTi. Considering the findings of the literature review, a checklist has been provided to assist with choosing finishing/sterilization methods and relevant rationale and recommendations to consider when selecting a surface finishing process for NiTi used in implantable medical devices.


Subject(s)
Ethylene Oxide , Peracetic Acid , Alloys/chemistry , Biocompatible Materials , Corrosion , Hydrogen Peroxide , Materials Testing , Oxides/chemistry , Prostheses and Implants , Steam , Surface Properties , Titanium/chemistry
2.
J Biomed Mater Res A ; 110(6): 1291-1306, 2022 06.
Article in English | MEDLINE | ID: mdl-35156305

ABSTRACT

Tantalum (Ta) and its alloys have been used for various cardiovascular, orthopedic, fracture fixation, dental, and spinal fusion implants. This review evaluates the biological and material properties of Ta and its alloys. Specifically, the biological properties including hemocompatibility and osseointegration, and material properties including radiopacity, MRI compatibility, corrosion resistance, surface characteristics, semiconductivity, and mechanical properties are covered. This review highlights how the material properties of Ta and its alloys contribute to its excellent biological properties for use in implants and medical devices.


Subject(s)
Alloys , Tantalum , Biocompatible Materials , Corrosion , Materials Testing , Osseointegration , Surface Properties , Titanium
3.
Aquat Toxicol ; 79(3): 268-77, 2006 Sep 12.
Article in English | MEDLINE | ID: mdl-16891002

ABSTRACT

The ubiquitous presence of nonylphenolethoxylate/octylphenolethoxylate (NPE/OPE) compounds in aquatic environments adjacent to wastewater treatment plants (WWTP) warrants an assessment of the endocrine disrupting potential of these complex mixtures on aquatic vertebrates. In this study, fathead minnow larvae were exposed for 64 days to a mixture of NPE/OPE, which closely models the NPE/OPE composition of a major metropolitan WWTP effluent. Target exposure concentrations included a total NPE/OPE mixture load of 200% of the WWTP effluent concentration (148microg/L), 100% of the WWTP effluent concentration (74microg/L) and 50% of the WWTP effluent concentration (38microg/L). The NPE/OPE mixture contained 0.2% 4-t-octylphenol, 2.8% 4-nonylphenol, 5.1% 4-nonylphenolmonoethoxylate, 9.3% 4-nonylphenoldiethoxylate, 0.9% 4-t-octylphenolmonoethoxylate, 3.1% 4-t-octylphenoldiethoxylate, 33.8% 4-nonylphenolmonoethoxycarboxylate, and 44.8% 4-nonylphenoldiethoxycarboxylate. An additional exposure of 5microg/L 4-nonylphenol (nominal) was conducted. The exposure utilized a flow-through system supplied by ground water and designed to deliver consistent concentrations of applied chemicals. Following exposure, larvae were raised to maturity. Upon sexual maturation, exposed male fish were allowed to compete with control males in a competitive spawning assay. Nest holding ability of control and exposed fish was carefully monitored for 7 days. All male fish were then sacrificed and analyzed for plasma vitellogenin, developmental changes in gonadal tissues, alterations in the development of secondary sexual characters, morphometric changes, and changes to reproductive behavior. When exposed to the 200% NPE/OPE treatment most larvae died within the first 4 weeks of exposure. Both the 100% and 50% NPE/OPE exposures caused a significant decrease in reproductive behavior, as indicated by an inability of many of the previously exposed males to acquire and hold a nest site required for reproduction. In contrast, the 5microg/L 4-nonylphenol exposure resulted in significantly enhanced reproductive behavior compared to that of control males and a majority of the nesting sites were held by previously exposed males. No significant change in the development of gonadal tissues was observed. The 100% NPE/OPE exposure resulted in a significant reduction in the gonadal somatic index and in the prominence of secondary sexual characteristics of exposed larvae. This study indicates that NPE/OPE mixtures have an effect on the reproductive competence of previously exposed male fathead minnows. In addition, 4-nonylphenol concentrations utilized in all exposures were below regulatory guidelines, suggesting that evaluation of 4-nonylphenol alone may not be sufficient for identifying potentially adverse effects of this suite of compounds usually found as mixtures in the aquatic environment.


Subject(s)
Cyprinidae/physiology , Environmental Exposure , Ethylene Glycols/toxicity , Water Pollutants, Chemical/toxicity , Animals , Female , Gonads/drug effects , Larva/drug effects , Male , Reproduction/drug effects , Sex Ratio , Survival Analysis , Time Factors , Vitellogenins/analysis , Vitellogenins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...