Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ambio ; 53(6): 845-870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643341

ABSTRACT

This perspective emerged from ongoing dialogue among ecologists initiated by a virtual workshop in 2021. A transdisciplinary group of researchers and practitioners conclude that urban ecology as a science can better contribute to positive futures by focusing on relationships, rather than prioritizing urban structures. Insights from other relational disciplines, such as political ecology, governance, urban design, and conservation also contribute. Relationality is especially powerful given the need to rapidly adapt to the changing social and biophysical drivers of global urban systems. These unprecedented dynamics are better understood through a relational lens than traditional structural questions. We use three kinds of coproduction-of the social-ecological world, of science, and of actionable knowledge-to identify key processes of coproduction within urban places. Connectivity is crucial to relational urban ecology. Eight themes emerge from the joint explorations of the paper and point toward social action for improving life and environment in urban futures.


Subject(s)
Cities , Ecology , Conservation of Natural Resources/methods , City Planning/methods , Humans
2.
Ambio ; 53(6): 871-889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643343

ABSTRACT

This paper builds on the expansion of urban ecology from a biologically based discipline-ecology in the city-to an increasingly interdisciplinary field-ecology of the city-to a transdisciplinary, knowledge to action endeavor-an ecology for and with the city. We build on this "prepositional journey" by proposing a transformative shift in urban ecology, and we present a framework for how the field may continue this shift. We conceptualize that urban ecology is in a state of flux, and that this shift is needed to transform urban ecology into a more engaged and action based field, and one that includes a diversity of actors willing to participate in the future of their cities. In this transformative shift, these actors will engage, collaborate, and participate in a continuous spiral of knowledge → action → knowledge spiral and back to knowledge loop, with the goal of co producing sustainable and resilient solutions to myriad urban challenges. Our framework for this transformative shift includes three pathways: (1) a repeating knowledge → action → knowledge spiral of ideas, information, and solutions produced by a diverse community of agents of urban change working together in an "urban sandbox"; (2) incorporation of a social-ecological-technological systems framework in this spiral and expanding the spiral temporally to include the "deep future," where future scenarios are based on a visioning of seemingly unimaginable or plausible future states of cities that are sustainable and resilient; and (3) the expansion of the spiral in space, to include rural areas and places that are not yet cities. The three interrelated pathways that define the transformative shift demonstrate the power of an urban ecology that has moved beyond urban systems science and into a realm where collaborations among diverse knowledges and voices are working together to understand cities and what is urban while producing sustainable solutions to contemporary challenges and envisioning futures of socially, ecologically, and technologically resilient cities. We present case study examples of each of the three pathways that make up this transformative shift in urban ecology and discuss both limitations and opportunities for future research and action with this transdisciplinary broadening of the field.


Subject(s)
Cities , Ecology , Conservation of Natural Resources , City Planning , Humans
3.
Ambio ; 53(6): 826-844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643345

ABSTRACT

We ask how environmental justice and urban ecology have influenced one another over the past 25 years in the context of the US Long-Term Ecological Research (LTER) program and Baltimore Ecosystem Study (BES) project. BES began after environmental justice emerged through activism and scholarship in the 1980s but spans a period of increasing awareness among ecologists and environmental practitioners. The work in Baltimore provides a detailed example of how ecological research has been affected by a growing understanding of environmental justice. The shift shows how unjust environmental outcomes emerge and are reinforced over time by systemic discrimination and exclusion. We do not comprehensively review the literature on environmental justice in urban ecology but do present four brief cases from the Caribbean, Africa, and Asia, to illustrate the global relevance of the topic. The example cases demonstrate the necessity for continuous engagement with communities in addressing environmental problem solving.


Subject(s)
Ecology , Ecosystem , Baltimore , Social Justice , Caribbean Region , Asia , Cities , Africa , Research , Humans , Conservation of Natural Resources , United States
4.
J Environ Manage ; 275: 111132, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33002703

ABSTRACT

Local regulations on residential landscapes (yards and gardens) can facilitate or constrain ecosystem services and disservices in cities. To our knowledge, no studies have undertaken a comprehensive look at how municipalities regulate residential landscapes to achieve particular goals and to control management practices. Across six U.S. cities, we analyzed 156 municipal ordinances to examine regional patterns in local landscape regulations and their implications for sustainability. Specifically, we conducted content analysis to capture regulations aimed at: 1) goals pertaining to conservation and environmental management, aesthetics and nuisance avoidance, and health and wellbeing, and 2) management actions including vegetation maintenance, water and waste management, food production, and chemical inputs. Our results reveal significant variation in local and regional regulations. While regulatory goals stress stormwater management and nuisance avoidance, relatively few municipalities explicitly regulate residential yards to maintain property values, mitigate heat, or avoid allergens. Meanwhile, biological conservation and water quality protection are common goals, yet regulations on yard management practices (e.g., non-native plants or chemical inputs) sometimes contradict these purposes. In addition, regulations emphasizing aesthetics and the maintenance of vegetation, mowing of grass and weeds, as well as the removal of dead wood, may inhibit wildlife-friendly yards. As a whole, landscaping ordinances largely ignore tradeoffs between interacting goals and outcomes, thereby limiting their potential to support landscape sustainability. Recommendations therefore include coordinated, multiobjective planning through partnerships among planners, developers, researchers, and non-government entities at multiple scales.


Subject(s)
Conservation of Natural Resources , Ecosystem , Cities , Gardening , Plants
5.
Ecol Appl ; 29(4): e01884, 2019 06.
Article in English | MEDLINE | ID: mdl-30933402

ABSTRACT

In natural grasslands, C4 plant dominance increases with growing season temperatures and reflects distinct differences in plant growth rates and water use efficiencies of C3 vs. C4 photosynthetic pathways. However, in lawns, management decisions influence interactions between planted turfgrass and weed species, leading to some uncertainty about the degree of human vs. climatic controls on lawn species distributions. We measured herbaceous plant carbon isotope ratios (δ13 C, index of C3 /C4 relative abundance) and C4 cover in residential lawns across seven U.S. cities to determine how climate, lawn plant management, or interactions between climate and plant management influenced C4 lawn cover. We also calculated theoretical C4 carbon gain predicted by a plant physiological model as an index of expected C4 cover due to growing season climatic conditions in each city. Contrary to theoretical predictions, plant δ13 C and C4 cover in urban lawns were more strongly related to mean annual temperature than to growing season temperature. Wintertime temperatures influenced the distribution of C4 lawn turf plants, contrary to natural ecosystems where growing season temperatures primarily drive C4 distributions. C4 cover in lawns was greatest in the three warmest cities, due to an interaction between climate and homeowner plant management (e.g., planting C4 turf species) in these cities. The proportion of C4 lawn species was similar to the proportion of C4 species in the regional grass flora. However, the majority of C4 species were nonnative turf grasses, and not of regional origin. While temperature was a strong control on lawn species composition across the United States, cities differed as to whether these patterns were driven by cultivated lawn grasses vs. weedy species. In some cities, biotic interactions with weedy plants appeared to dominate, while in other cities, C4 plants were predominantly imported and cultivated. Elevated CO2 and temperature in cities can influence C3 /C4 competitive outcomes; however, this study provides evidence that climate and plant management dynamics influence biogeography and ecology of C3 /C4 plants in lawns. Their differing water and nutrient use efficiency may have substantial impacts on carbon, water, energy, and nutrient budgets across cities.


Subject(s)
Ecosystem , Poaceae , Cities , Humans , Photosynthesis , Plant Dispersal , United States
6.
Environ Manage ; 41(5): 742-52, 2008 May.
Article in English | MEDLINE | ID: mdl-18175169

ABSTRACT

This article investigates how remotely sensed lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict household lawn fertilization practices on private residential lands. This study involves two watersheds, Glyndon and Baisman's Run, in Baltimore County, Maryland, USA. Parcel lawn area and lawn greenness were derived from high-resolution aerial imagery using an object-oriented classification approach. Four indicators of household characteristics, including lot size, square footage of the house, housing value, and housing age were obtained from a property database. Residential lawn care survey data combined with remotely sensed parcel lawn area and greenness data were used to estimate two measures of household lawn fertilization practices, household annual fertilizer nitrogen application amount (N_yr) and household annual fertilizer nitrogen application rate (N_ha_yr). Using multiple regression with multi-model inferential procedures, we found that a combination of parcel lawn area and parcel lawn greenness best predicts N_yr, whereas a combination of parcel lawn greenness and lot size best predicts variation in N_ha_yr. Our analyses show that household fertilization practices can be effectively predicted by remotely sensed lawn indices and household characteristics. This has significant implications for urban watershed managers and modelers.


Subject(s)
Fertilizers/statistics & numerical data , Color , Gardening/statistics & numerical data , Linear Models , Models, Theoretical , Residence Characteristics , Socioeconomic Factors
7.
Sensors (Basel) ; 8(3): 1613-1636, 2008 Mar 10.
Article in English | MEDLINE | ID: mdl-27879784

ABSTRACT

Accurate and timely information about land cover pattern and change in urbanareas is crucial for urban land management decision-making, ecosystem monitoring andurban planning. This paper presents the methods and results of an object-basedclassification and post-classification change detection of multitemporal high-spatialresolution Emerge aerial imagery in the Gwynns Falls watershed from 1999 to 2004. TheGwynns Falls watershed includes portions of Baltimore City and Baltimore County,Maryland, USA. An object-based approach was first applied to implement the land coverclassification separately for each of the two years. The overall accuracies of theclassification maps of 1999 and 2004 were 92.3% and 93.7%, respectively. Following theclassification, we conducted a comparison of two different land cover change detectionmethods: traditional (i.e., pixel-based) post-classification comparison and object-basedpost-classification comparison. The results from our analyses indicated that an objectbasedapproach provides a better means for change detection than a pixel based methodbecause it provides an effective way to incorporate spatial information and expertknowledge into the change detection process. The overall accuracy of the change mapproduced by the object-based method was 90.0%, with Kappa statistic of 0.854, whereasthe overall accuracy and Kappa statistic of that by the pixel-based method were 81.3% and0.712, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...