Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 70(3): 1175-84, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11854198

ABSTRACT

Human granulocytic ehrlichiosis (HGE) is an emerging tick-borne zoonosis caused by a strain of Anaplasma phagocytophila called the HGE agent, an obligatory intracellular bacterium. The agent expresses immunodominant 44-kDa outer membrane proteins (P44s) encoded by a multigene family. The present study established an experimental process for transmission of the HGE agent from infected mice (a reservoir model) to nymphal Ixodes scapularis ticks (a biological vector) and subsequently to horses (a patient model) by the adult infected ticks. Overall, a total of 20 different p44 transcripts were detected in the mammals, ticks, and cell cultures. Among them, a transcript from a p44-18 gene was major at acute stage in mice and horses but minor in ticks. Both mRNA and protein produced from the p44-18 gene were detected in the HGE agent cultivated in HL-60 cells at 37 degrees C, but their expression levels decreased in the organisms cultivated at 24 degrees C, suggesting that temperature is one of the factors that influence the expression of members of the p44 multigene family. Several additional p44 transcripts that were not detected in the mammals at the acute stage of infection were detected in ticks. Phylogenetic analysis of the 20 different p44 transcripts revealed that the major transcripts found in mammals and ticks were distinct, suggesting a difference in surface properties between populations of the HGE agent in different host environments. The present study provides new information for understanding the role of the p44 multigene family in transmission of the HGE agent between mammals and ticks.


Subject(s)
Anaplasma/genetics , Bacterial Outer Membrane Proteins/genetics , Ehrlichiosis/genetics , RNA, Bacterial/genetics , RNA, Messenger/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Ehrlichiosis/transmission , Genetic Heterogeneity , Horses , Ixodes , Mice , Mice, Inbred DBA , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Ticks/microbiology
2.
J Clin Microbiol ; 40(2): 540-6, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11825969

ABSTRACT

Detection of vector-borne pathogens is necessary for investigation of their association with vertebrate and invertebrate hosts. The ability to detect Ehrlichia spp. within individual experimentally infected ticks would be valuable for studies to evaluate the relative competence of different vector species and transmission scenarios. The purpose of this study was to develop a sensitive PCR assay based on oligonucleotide sequences from the unique Ehrlichia canis gene, p30, to facilitate studies that require monitoring this pathogen in canine and tick hosts during experimental transmission. Homologous sequences for Ehrlichia chaffeensis p28 were compared to sequences of primers derived from a sequence conserved among E. canis isolates. Criteria for primer selection included annealing scores, identity of the primers to homologous E. chaffeensis sequences, and the availability of similarly optimal primers that were nested within the target template sequence. The p30-based assay was at least 100-fold more sensitive than a previously reported nested 16S ribosomal DNA (rDNA)-based assay and did not amplify the 200-bp target amplicon from E. chaffeensis, the human granulocytic ehrlichiosis agent, or Ehrlichia muris DNA. The assay was used to detect E. canis in canine carrier blood and in experimentally infected Rhipicephalus sanguineus ticks. Optimized procedures for preparing tissues from these hosts for PCR assay are described. Our results indicated that this p30-based PCR assay will be useful for experimental investigations, that it has potential as a routine test, and that this approach to PCR assay design may be applicable to other pathogens that occur at low levels in affected hosts.


Subject(s)
Bacterial Proteins/genetics , Carrier State/microbiology , Dog Diseases/microbiology , Ehrlichia/isolation & purification , Polymerase Chain Reaction , Ticks/microbiology , Animals , Bacterial Proteins/metabolism , Base Sequence , Blood/microbiology , Dogs , Ehrlichia/genetics , Ehrlichiosis/microbiology , Ehrlichiosis/veterinary , Sensitivity and Specificity , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...