Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 37(6): 1767-1777, 2018 06.
Article in English | MEDLINE | ID: mdl-29480553

ABSTRACT

In situ amendment of surface sediment with activated carbon is a promising technique for reducing the availability of hydrophobic organic compounds in surface sediment. The present study evaluated the performance of a logistically challenging activated carbon placement in a high-energy hydrodynamic environment adjacent to and beneath a pier in an active military harbor. Measurements conducted preamendment and 10, 21, and 33 months (mo) postamendment using in situ exposures of benthic invertebrates and passive samplers indicated that the targeted 4% (by weight) addition of activated carbon (particle diameter ≤74 µm) in the uppermost 10 cm of surface sediment reduced polychlorinated biphenyl availability by an average (± standard deviation) of 81 ± 11% in the first 10 mo after amendment. The final monitoring event (33 mo after amendment) indicated an approximate 90 ± 6% reduction in availability, reflecting a slight increase in performance and showing the stability of the amendment. Benthic invertebrate census and sediment profile imagery did not indicate significant differences in benthic community ecological metrics among the preamendment and 3 postamendment monitoring events, supporting existing scientific literature that this approximate activated carbon dosage level does not significantly impair native benthic invertebrate communities. Recommendations for optimizing typical site-specific assessments of activated carbon performance are also discussed and include quantifying reductions in availability and confirming placement of activated carbon. Environ Toxicol Chem 2018;37:1767-1777. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Subject(s)
Charcoal/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Animals , Biota , Geologic Sediments/chemistry , Invertebrates
2.
Environ Toxicol Chem ; 34(1): 6-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25319944

ABSTRACT

Sediment quality values (SQV) are commonly used-and misused-to characterize the need for investigation, understand causes of observed effects, and derive management strategies to protect benthic invertebrates from direct toxic effects. The authors compiled more than 40 SQVs for mercury, nearly all of which are "co-occurrence" SQVs derived from databases of paired chemistry and benthic invertebrate effects data obtained from field-collected sediment. Co-occurrence SQVs are not derived in a manner that reflects cause-effect, concentration-response relationships for individual chemicals such as mercury, because multiple potential stressors often co-occur in the data sets used to derive SQVs. The authors assembled alternative data to characterize mercury-specific effect thresholds, including results of 7 laboratory studies with mercury-spiked sediments and 23 studies at mercury-contaminated sites (e.g., chloralkali facilities, mercury mines). The median (± interquartile range) co-occurrence SQVs associated with a lack of effects (0.16 mg/kg [0.13-0.20 mg/kg]) or a potential for effects (0.88 mg/kg [0.50-1.4 mg/kg]) were orders of magnitude lower than no-observed-effect concentrations reported in mercury-spiked toxicity studies (3.3 mg/kg [1.1-9.4 mg/kg]) and mercury site investigations (22 mg/kg [3.8-66 mg/kg]). Additionally, there was a high degree of overlap between co-occurrence SQVs and background mercury levels. Although SQVs are appropriate only for initial screening, they are commonly misused for characterizing or managing risks at mercury-contaminated sites. Spiked sediment and site data provide more appropriate and useful alternative information for characterization and management purposes. Further research is recommended to refine mercury effect thresholds for sediment that address the bioavailability and causal effects of mercury exposure. Environ Toxicol Chem 2015;34:6-21. © 2014 SETAC.


Subject(s)
Aquatic Organisms/drug effects , Geologic Sediments/chemistry , Invertebrates/drug effects , Mercury Compounds/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Mercury Compounds/toxicity , Methylmercury Compounds/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...