Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Methods Mol Biol ; 2768: 305-316, 2024.
Article in English | MEDLINE | ID: mdl-38502401

ABSTRACT

Interferon-gamma (IFNγ) ELISpot and FluoroSpot are widely used assays to detect functional cell responses in immunotherapy clinical studies. Recognized for their importance in vaccine development studies to quantitate immune responses, these assays have more recently risen to the forefront in cell and gene therapy as well as cancer immunotherapy fields where responses against cancer neoantigens are not easily detectable above assay background. Here, we test a new class of fetal bovine serum (FBS), CultraPure FBS, in ex vivo ELISpot and FluoroSpot assays and cultured FluoroSpot assays following in vitro expansion. Several CultraPure FBS lots that have been specially formulated through the process of lyophilization (lyo-FBS) were compared to liquid CultraPure FBS. We stimulated human PBMCs with antigen-specific peptide pools diluted in media supplemented with liquid CultraPure FBS or lyo-FBS and found equivalent cytokine production with negligible to no assay background with both liquid and lyo-FBS formats. Moreover, the lyo-FBS showed lot-to-lot consistency and 90-day refrigerated (4 °C) stability in both ex vivo direct and in vitro cultured assays. In addition, we present here a method using lyo-FBS for the expansion of low-frequency antigen-specific T cells, mimicking the low frequency seen with cancer neoantigens by utilizing a cultured FluoroSpot assay. Our results demonstrate the presence of Granzyme B, interferon-gamma (IFNγ), and tumor necrosis factor (TNF) production by antigen-specific polyfunctional T cells following a 9-day culture using media supplemented with lyo-FBS.


Subject(s)
Neoplasms , Vaccines , Humans , Serum Albumin, Bovine , Interferon-gamma , Immunity
2.
Int J Aging Hum Dev ; 96(4): 447-470, 2023 06.
Article in English | MEDLINE | ID: mdl-35686309

ABSTRACT

Research on interpersonal interaction dynamics in relationships between persons with dementia and their family caregivers has been limited. We examine the role of these dynamics in decisions to transition a family member from home care to congregate care, with a particular focus on the role of fear of incompetence. Fear of incompetence is the fear of being unable to interact, communicate in a meaningful way, or take care of a close family member with dementia. In this study (N = 350 family caregivers), perceived negative changes in the family member with dementia predicted increased perceived dependency, which predicted both increased caregiver burden and greater fear of incompetence in caregivers, which, in turn, predicted stronger care transition desire. Strategies should be aimed not only at reducing dependency of the care recipient but also teaching family caregivers interaction skills that decrease their fear of interactional incompetence and thus promote home care continuation.


Subject(s)
Caregivers , Dementia , Humans , Patient Transfer , Family , Interpersonal Relations
3.
Bioanalysis ; 13(21): 1597-1616, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34708658

ABSTRACT

Flow cytometry is a powerful technology used in research, drug development and clinical sample analysis for cell identification and characterization, allowing for the simultaneous interrogation of multiple targets on various cell subsets from limited samples. Recent advancements in instrumentation and fluorochrome availability have resulted in significant increases in the complexity and dimensionality of flow cytometry panels. Though this increase in panel size allows for detection of a broader range of markers and sub-populations, even in restricted biological samples, it also comes with many challenges in panel design, optimization, and downstream data analysis and interpretation. In the current paper we describe the practices we established for development of high-dimensional panels on the Aurora spectral flow cytometer to aid clinical sample analysis.


Subject(s)
Flow Cytometry , Clinical Trials as Topic , Humans
4.
Frontline Gastroenterol ; 12(4): 279-287, 2021.
Article in English | MEDLINE | ID: mdl-34249312

ABSTRACT

OBJECTIVE: The COVID-19 pandemic has placed increased strain on healthcare systems worldwide with enormous reorganisation undertaken to support 'COVID-centric' services. Non-COVID-19 admissions reduced secondary to public health measures to halt viral transmission. We aimed to understand the impact of the response to COVID-19 on the outcomes of upper gastrointestinal (UGI) bleeds. DESIGN/METHODS: A retrospective observational multicentre study comparing outcomes following endoscopy for UGI bleeds from 24 March 2020 to 20 April 2020 to the corresponding dates in 2019. The primary outcome was in-hospital survival at 30 days with secondary outcomes of major rebleeding within 30 days postprocedure and intervention at the time of endoscopy. RESULTS: 224 endoscopies for 203 patients with UGI bleeds were included within this study. 19 patients were diagnosed with COVID-19. There was a 44.4% reduction in the number of procedures performed between 2019 and 2020. Endoscopies performed for UGI bleeds in the COVID-19 era were associated with an adjusted reduced 30-day survival (OR 0.25, 95% CI 0.08-0.67). There was no increased risk of major rebleeding or interventions during this era. Patients with COVID-19 did not have reduced survival or increased complication rates. CONCLUSION: Endoscopy for UGI bleeds in the COVID-19 era is associated with reduced survival. No clear cause has been identified but we suspect that this is a secondary effect of the response to the COVID-19 pandemic. Urgent work is required to encourage the public to seek medical help if required and to optimise patient pathways to ensure that the best possible care is provided.

5.
Intensive Care Med ; 46(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: mdl-32355989

ABSTRACT

PURPOSE: Short-term exposure to outdoor air pollution has been positively associated with numerous measures of acute morbidity and mortality, most consistently as excess cardiorespiratory disease associated with fine particulate matter (PM2.5), particularly in vulnerable populations. It is unknown if the critically ill, a vulnerable population with high levels of cardiorespiratory disease, is affected by air pollution. METHODS: We performed a time series analysis of emergency cardiorespiratory, stroke and sepsis intensive care (ICU) admissions for the years 2008-2016, using data from the Australian and New Zealand Intensive Care Society Adult Patient Database (ANZICS-APD). Case-crossover analysis was conducted to assess the relationship between air pollution and the frequency and severity of ICU admissions having adjusted for temperature, humidity, public holidays and influenza activity. RESULTS: 46,965 episodes in 87 separate ICUs were analysed. We found no statistically significant associations with admission counts. However, ICU admissions ending in death within 30 days were significantly positively associated with short-term exposure to PM2.5 [RR 1.18, 95% confidence interval (CI) 1.02-1.37, per 10 µg/m3 increase]. This association was more pronounced in those aged 65 and over (RR 1.33, 95% CI 1.11-1.58, per 10 µg/m3). CONCLUSIONS: Increased ICU mortality was associated with higher levels of PM2.5. Larger studies are required to determine if the frequency of ICU admissions is positively associated with short-term exposure to air pollution.


Subject(s)
Air Pollution , Adult , Aged , Air Pollution/adverse effects , Australia/epidemiology , Critical Care , Humans , New Zealand/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis
8.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Article in English | MEDLINE | ID: mdl-31203377

ABSTRACT

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Subject(s)
Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Aged , Blood Glucose/drug effects , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Female , Glucose/metabolism , Glucose Tolerance Test , Humans , Male , Metformin/therapeutic use , Middle Aged , Prediabetic State/blood , Prediabetic State/epidemiology , Prospective Studies
10.
Diabetes Care ; 42(1): 17-26, 2019 01.
Article in English | MEDLINE | ID: mdl-30455330

ABSTRACT

OBJECTIVE: Maturity-onset diabetes of the young (MODY) due to variants in HNF1A is the most common type of monogenic diabetes. Frequent misdiagnosis results in missed opportunity to use sulfonylureas as first-line treatment. A nongenetic biomarker could improve selection of subjects for genetic testing and increase diagnosis rates. We previously reported that plasma levels of antennary fucosylated N-glycans and high-sensitivity C-reactive protein (hs-CRP) are reduced in individuals with HNF1A-MODY. In this study, we examined the potential use of N-glycans and hs-CRP in discriminating individuals with damaging HNF1A alleles from those without HNF1A variants in an unselected population of young adults with nonautoimmune diabetes. RESEARCH DESIGN AND METHODS: We analyzed the plasma N-glycan profile, measured hs-CRP, and sequenced HNF1A in 989 individuals with diabetes diagnosed when younger than age 45, persistent endogenous insulin production, and absence of pancreatic autoimmunity. Systematic assessment of rare HNF1A variants was performed. RESULTS: We identified 29 individuals harboring 25 rare HNF1A alleles, of which 3 were novel, and 12 (in 16 probands) were considered pathogenic. Antennary fucosylated N-glycans and hs-CRP were able to differentiate subjects with damaging HNF1A alleles from those without rare HNF1A alleles. Glycan GP30 had a receiver operating characteristic curve area under the curve (AUC) of 0.90 (88% sensitivity, 80% specificity, cutoff 0.70%), whereas hs-CRP had an AUC of 0.83 (88% sensitivity, 69% specificity, cutoff 0.81 mg/L). CONCLUSIONS: Half of rare HNF1A sequence variants do not cause MODY. N-glycan profile and hs-CRP could both be used as tools, alone or as adjuncts to existing pathways, for identifying individuals at high risk of carrying a damaging HNF1A allele.


Subject(s)
C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/blood , Hepatocyte Nuclear Factor 1-alpha/blood , Polysaccharides/blood , Adolescent , Adult , Alleles , Biomarkers/blood , Cholesterol/blood , Diabetes Mellitus, Type 2/drug therapy , Female , Glycated Hemoglobin/metabolism , Humans , Insulin/blood , Insulin/therapeutic use , Male , Middle Aged , Sensitivity and Specificity , Sequence Analysis, DNA , Triglycerides/blood , Young Adult
11.
Nat Genet ; 50(8): 1122-1131, 2018 08.
Article in English | MEDLINE | ID: mdl-30054598

ABSTRACT

The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human ß-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in ß-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.


Subject(s)
Amidine-Lyases/genetics , Diabetes Mellitus, Type 2/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/pathology , Mixed Function Oxygenases/genetics , Alleles , Animals , Cell Line , Genetic Predisposition to Disease , HEK293 Cells , Humans , Insulin/genetics , Mice , Polymorphism, Single Nucleotide
12.
Arthritis Rheumatol ; 70(12): 2087-2095, 2018 12.
Article in English | MEDLINE | ID: mdl-29956883

ABSTRACT

OBJECTIVE: B cells impact the progression of systemic sclerosis (SSc; scleroderma) through multiple pathogenic mechanisms. CD19 inhibition in mice reduced skin thickness, collagen production, and autoantibody levels, consistent with CD19 expression on plasma cells (PCs), the source of antibody production. PC depletion could effectively reduce collagen deposition and inflammation in SSc; therefore, we investigated the effects of PC depletion on SSc disease activity. METHODS: A PC gene signature was evaluated in SSc skin biopsy samples in 2 phase I clinical trials. We assessed microarray data from tissue from public studies of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), dermatomyositis (DM), systemic lupus erythematosus (SLE), and atopic dermatitis, as well as blood from a phase IIb clinical trial in SLE. RESULTS: The PC signature was elevated in SSc skin specimens compared to healthy donor skin (P = 2.28 × 10-6 ) and correlated with the baseline modified Rodnan skin thickness score (MRSS) (r = 0.64, P = 0.0004). Patients with a high PC signature at baseline showed greater improvement in the MRSS (mean ± SD change 35 ± 16%; P = 6.30 × 10-4 ) following anti-CD19 treatment with inebilizumab (MEDI-551) than did patients with a low PC signature at baseline (mean ± SD change 8 ± 12%; P = 0.104). The PC signature was overexpressed in tissue from patients with SLE, DM, COPD, interstitial lung disease, and IPF relative to controls (all fold change >2; P < 0.001). The PC signature also differed significantly between SLE patients with mild-to-moderate disease and those with severe disease (SLE Disease Activity Index cutoff at 10) (fold change 1.44; P = 3.90 × 10-3 ) and correlated significantly with the degree of emphysema in COPD (r = 0.53, P = 7.55 × 10-8 ). CONCLUSION: Our results support the notion that PCs have a role in the pathogenesis of SSc and other autoimmune or pulmonary indications. An elevated pretreatment PC signature was associated with increased benefit from MEDI-551 in SSc.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Plasma Cells/metabolism , Scleroderma, Systemic/drug therapy , Severity of Illness Index , Adult , Biopsy , Double-Blind Method , Female , Humans , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/pathology , Male , Plasma Cells/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Scleroderma, Systemic/pathology , Skin/pathology , Treatment Outcome
13.
PLoS One ; 13(1): e0189886, 2018.
Article in English | MEDLINE | ID: mdl-29293525

ABSTRACT

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Animals , Humans , Insulin Secretion , Mice
14.
Curr Opin Psychol ; 19: 144-148, 2018 02.
Article in English | MEDLINE | ID: mdl-29279214

ABSTRACT

There is perhaps no finding in psychology that is more consistent than the human motivation to avoid negative experiences and seek out positive ones. The current review details some of the aggression-related consequences that result from failures to avoid these negative experiences. Attention is paid to the theoretical processes at work that produce such effects. A review is conducted of the empirical literature detailing animal and human studies, in the lab and field. Lastly, we briefly discuss future directions in research that may advance our understanding of such effects.


Subject(s)
Affect , Aggression/psychology , Animals , Empirical Research , Hot Temperature , Humans , Pain/psychology , Stress, Psychological
16.
Pers Soc Psychol Bull ; 43(7): 986-998, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28903698

ABSTRACT

Cultural generality versus specificity of media violence effects on aggression was examined in seven countries (Australia, China, Croatia, Germany, Japan, Romania, the United States). Participants reported aggressive behaviors, media use habits, and several other known risk and protective factors for aggression. Across nations, exposure to violent screen media was positively associated with aggression. This effect was partially mediated by aggressive cognitions and empathy. The media violence effect on aggression remained significant even after statistically controlling a number of relevant risk and protective factors (e.g., abusive parenting, peer delinquency), and was similar in magnitude to effects of other risk factors. In support of the cumulative risk model, joint effects of different risk factors on aggressive behavior in each culture were larger than effects of any individual risk factor.


Subject(s)
Aggression , Exposure to Violence , Mass Media , Adolescent , Adult , Cross-Cultural Comparison , Female , Humans , Male , Risk Factors , Video Games , Young Adult
17.
Diabetes ; 66(8): 2296-2309, 2017 08.
Article in English | MEDLINE | ID: mdl-28490609

ABSTRACT

Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose-raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose-raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Genetic Variation/physiology , Insulin/genetics , Transcription Factor 7-Like 2 Protein/physiology , Alleles , C-Peptide/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Genotyping Techniques , Glucose Tolerance Test/methods , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Linear Models , Liver/metabolism
18.
Nat Genet ; 48(10): 1151-1161, 2016 10.
Article in English | MEDLINE | ID: mdl-27618447

ABSTRACT

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Subject(s)
Blood Pressure/genetics , Genetic Variation , Hypertension/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans
19.
Nat Genet ; 48(9): 1055-1059, 2016 09.
Article in English | MEDLINE | ID: mdl-27500523

ABSTRACT

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10(-14)) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 2/genetics , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Blood Glucose/analysis , Body Mass Index , Diabetes Mellitus, Type 2/drug therapy , Genome-Wide Association Study , Glycated Hemoglobin/analysis , Humans , White People
20.
J Immunol ; 197(1): 42-50, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27226090

ABSTRACT

Type I IFNs play a critical role in the immune response to viral infection and may also drive autoimmunity through modulation of monocyte maturation and promotion of autoreactive lymphocyte survival. Recent demonstrations of type I IFN gene signatures in autoimmune diseases, including scleroderma, led us to investigate the pathological role of IFNs in a preclinical model of sclerodermatous graft-versus-host disease. Using a neutralizing Ab against the type I IFN receptor IFNAR1, we observed a marked reduction in dermal inflammation, vasculopathy, and fibrosis compared with that seen in the presence of intact IFNAR1 signaling. The ameliorative effects of IFNAR1 blockade were restricted to the skin and were highly associated with inhibition of chronic vascular injury responses and not due to the inhibition of the T or B cell alloresponse. Inhibition of IFNAR1 normalized the overexpression of IFN-inducible genes in graft-versus-host disease skin and markedly reduced dermal IFN-α levels. Depletion of plasmacytoid dendritic cells, a major cellular source of type I IFNs, did not reduce the severity of fibrosis or type I IFN gene signature in the skin. Taken together, these studies demonstrate an important role for type I IFN in skin fibrosis, and they provide a rationale for IFNAR1 inhibition in scleroderma.


Subject(s)
Dendritic Cells/immunology , Graft vs Host Disease/immunology , Inflammation/immunology , Interferon-alpha/metabolism , Scleroderma, Systemic/immunology , Skin/pathology , Vascular Diseases/immunology , Animals , Antibodies, Blocking/administration & dosage , Autoantibodies/blood , Disease Models, Animal , Female , Fibrosis , Gene Expression Regulation , Humans , Interferon-alpha/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Interferon alpha-beta/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...