Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 42(12): 911-925, 2023 03.
Article in English | MEDLINE | ID: mdl-36725888

ABSTRACT

Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.


Subject(s)
Alternative Splicing , Breast Neoplasms , Humans , Female , Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Transcriptome , Carcinogenesis
2.
EMBO Rep ; 23(3): e53191, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35037361

ABSTRACT

The pluripotent state is not solely governed by the action of the core transcription factors OCT4, SOX2, and NANOG, but also by a series of co-transcriptional and post-transcriptional events, including alternative splicing (AS) and the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs. Zinc Finger Protein 207 (ZFP207) is an essential transcription factor for mammalian embryonic development. Here, we employ multiple functional analyses to characterize its role in mouse embryonic stem cells (ESCs). We find that ZFP207 plays a pivotal role in ESC maintenance, and silencing of Zfp207 leads to severe neuroectodermal differentiation defects. In striking contrast to human ESCs, mouse ZFP207 does not transcriptionally regulate neuronal and stem cell-related genes but exerts its effects by controlling AS networks and by acting as an RBP. Our study expands the role of ZFP207 in maintaining ESC identity, and underscores the functional versatility of ZFP207 in regulating neural fate commitment.


Subject(s)
Alternative Splicing , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Octamer Transcription Factor-3/metabolism , RNA , Animals , Cell Differentiation/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , RNA/metabolism
3.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34893873

ABSTRACT

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Subject(s)
Databases, Nucleic Acid , Enzymes/genetics , RNA/genetics , Ribonucleosides/genetics , User-Computer Interface , Base Sequence , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Computer Graphics , Databases, Protein , Datasets as Topic , Enzymes/metabolism , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Hematologic Diseases/genetics , Hematologic Diseases/metabolism , Hematologic Diseases/pathology , Humans , Internet , Mental Disorders/genetics , Mental Disorders/metabolism , Mental Disorders/pathology , Musculoskeletal Diseases/genetics , Musculoskeletal Diseases/metabolism , Musculoskeletal Diseases/pathology , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , RNA/metabolism , RNA Processing, Post-Transcriptional , Ribonucleosides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
NAR Cancer ; 3(3): zcab036, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34541538

ABSTRACT

Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.

5.
RNA ; 27(4): 367-389, 2021 04.
Article in English | MEDLINE | ID: mdl-33376192

ABSTRACT

RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.


Subject(s)
Metabolic Diseases/genetics , Neoplasms/genetics , Nervous System Diseases/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Untranslated/genetics , Apoptosis/genetics , Cell Cycle/genetics , Epigenesis, Genetic , Genetic Markers , Humans , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Neoplasms/metabolism , Neoplasms/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , RNA, Messenger/metabolism , RNA, Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...