Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2(2): 263-70, 2008 Feb.
Article in English | MEDLINE | ID: mdl-19206626

ABSTRACT

The pyrolysis of cylinder-forming samples of the diblock copolymer polystyrene-block-poly(ferrocenylethylmethylsilane) (PS-b-PFEMS) in bulk and in thin films has confirmed that these materials are useful for the generation of semi-ordered arrays of C/SiC ceramics containing Fe nanoparticles which are derived from the organometallic domains. In many cases, the ceramic mass yields were predictable and produced ceramics bearing a monomodal distribution of iron nanoparticles due to the nanoscaled structure of the preceramic PFEMS domains. The pyrolysis of thin films stabilized by cross-linking the PS domains with UV light demonstrated high areal yields, improved shape retention, and the presence of cylinder-centered magnetic nanoparticles.


Subject(s)
Crystallization/methods , Magnetics/methods , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Silanes/chemistry , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
2.
J Am Chem Soc ; 127(14): 5116-24, 2005 Apr 13.
Article in English | MEDLINE | ID: mdl-15810846

ABSTRACT

Borane reagents are widely used as reductants for the generation of colloidal metals. When treated with a variety of heterogeneous catalysts such as colloidal Rh, Rh/Al2O3, and Rh(0) black, BH3.THF (THF = tetrahydrofuran) was found to generate H2 gas with the concomitant formation of a passivating boron layer on the surface of the Rh metal, thereby acting as a poison and rendering the catalyst inactive toward the dehydrocoupling of Me2NH.BH3. Analogous poisoning effects were also detected for (i) colloidal Rh treated with other species containing B-H bonds such as [HB-NH]3, or Ga-H bonds such as those present in GaH3.OEt2, (ii) colloidal Rh that was generated from Rh(I) and Rh(III) salts using borane or borohydrides as reductants, and (iii) for other metals such as Ru and Pd. In contrast, analogous poisoning effects were not detected for the catalytic hydrogenation of cyclohexene using Rh/Al2O3 or the Pd-catalyzed Suzuki cross-coupling of PhB(OH)2 and PhI. These results suggest that although this poisoning behavior is not a universal phenomenon, the observation that such boron layers are formed and surface passivation may exist needs to be carefully considered when borane reagents are used for the generation of metal colloids for catalytic or materials science applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...