Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805654

ABSTRACT

Managed honey bee (Apis mellifera L.) colonies in North America and Europe have experienced high losses in recent years, which have been linked to weather conditions, lack of quality forage, and high parasite loads, particularly the obligate brood parasite, Varroa destructor. These factors may interact at various scales to have compounding effects on honey bee health, but few studies have been able to simultaneously investigate the effects of weather conditions, landscape factors, and management of parasites. We analyzed a dataset of 3,210 survey responses from beekeepers in Pennsylvania from 2017 to 2022 and combined these with remotely sensed weather variables and novel datasets about seasonal forage availability into a Random Forest model to investigate drivers of winter loss. We found that beekeepers who used treatment against Varroa had higher colony survival than those who did not treat. Moreover, beekeepers who used multiple types of Varroa treatment had higher colony survival rates than those who used 1 type of treatment. Our models found weather conditions are strongly associated with survival, but multiple-treatment type colonies had higher survival across a broader range of climate conditions. These findings suggest that the integrated pest management approach of combining treatment types can potentially buffer managed honey bee colonies from adverse weather conditions.


Subject(s)
Beekeeping , Seasons , Varroidae , Weather , Animals , Bees/parasitology , Varroidae/physiology , Beekeeping/methods , Pennsylvania , Pest Control/methods , Colony Collapse
2.
Sci Total Environ ; 929: 172329, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608892

ABSTRACT

As insect populations decline in many regions, conservation biologists are increasingly tasked with identifying factors that threaten insect species and developing effective strategies for their conservation. One insect group of global conservation concern are fireflies (Coleoptera: Lampyridae). Although quantitative data on firefly populations are lacking for most species, anecdotal reports suggest that some firefly populations have declined in recent decades. Researchers have hypothesized that North American firefly populations are most threatened by habitat loss, pesticide use, and light pollution, but the importance of these factors in shaping firefly populations has not been rigorously examined at broad spatial scales. Using data from >24,000 surveys (spanning 2008-16) from the citizen science program Firefly Watch, we trained machine learning models to evaluate the relative importance of a variety of factors on bioluminescent firefly populations: pesticides, artificial lights at night, land cover, soil/topography, short-term weather, and long-term climate. Our analyses revealed that firefly abundance was driven by complex interactions among soil conditions (e.g., percent sand composition), climate/weather (e.g., growing degree days), and land cover characteristics (e.g., percent agriculture and impervious cover). Given the significant impact that climactic and weather conditions have on firefly abundance, there is a strong likelihood that firefly populations will be influenced by climate change, with some regions becoming higher quality and supporting larger firefly populations, and others potentially losing populations altogether. Collectively, our results support hypotheses related to factors threatening firefly populations, especially habitat loss, and suggest that climate change may pose a greater threat than appreciated in previous assessments. Thus, future conservation of North American firefly populations will depend upon 1) consistent and continued monitoring of populations via programs like Firefly Watch, 2) efforts to mitigate the impacts of climate change, and 3) insect-friendly conservation practices.


Subject(s)
Citizen Science , Climate Change , Fireflies , Machine Learning , Animals , Fireflies/physiology , Ecosystem , Conservation of Natural Resources , Environmental Monitoring/methods
3.
J Exp Biol ; 227(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38516936

ABSTRACT

In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halt and the worker bees live for several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having large fat bodies, high expression levels of vitellogenin (a longevity-, nutrition- and immune-related gene), and large provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in autumn (i.e. lower brood area). We examined that theory here by assessing nurse bee physiology in both the summer and autumn, in colonies with varying levels of brood. We found that season is a better predictor of nurse bee physiology than brood area. This suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.


Subject(s)
Social Environment , Vitellogenins , Bees , Animals , Humans , Seasons
4.
Annu Rev Entomol ; 69: v-vi, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270982
5.
Ecol Evol ; 13(11): e10730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034342

ABSTRACT

Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild-caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.

6.
Ecol Evol ; 13(10): e10640, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37869440

ABSTRACT

Characterizing the nutritional needs of wild bee species is an essential step to better understanding bee biology and providing suitable supplemental forage for at-risk species. Here, we aim to characterize the nutritional needs of a model solitary bee species, Osmia cornifrons (Radoszkowski), by using dietary protein-to-lipid ratio (P:L ratio) as a proxy for nutritional niche and niche breadth. We first identified the mean target P:L ratio (~3.02:1) and P:L collection range (0.75-6.26:1) from pollen provisions collected across a variety of sites and time points. We then investigated the P:L tolerance range of larvae by rearing bees in vitro on a variety of diets. Multifloral and single-source pollen diets with P:L ratios within the range of surveyed provisions did not always support larval development, indicating that other dietary components such as plant secondary compounds and micronutrients must also be considered in bee nutritional experiments. Finally, we used pollen metabarcoding to identify pollen from whole larval provisions to understand how much pollen bees used from plants outside of their host plant families to meet their nutritional needs, as well as pollen from individual forager bouts, to observe if bees maintained strict floral constancy or visited multiple plant genera per foraging bout. Whole larval provision surveys revealed a surprising range of host plant pollen use, ranging from ~5% to 70% of host plant pollen per provision. Samples from individual foraging trips contained pollen from multiple genera, suggesting that bees are using some form of foraging decision making. Overall, these results suggest that O. cornifrons have a wide nutritional niche breadth, but while pollen P:L ratio tolerance is broad, a tolerable P:L ratio alone is not enough to create a quality diet for O. cornifrons, and the plant species that make up these diets must also be carefully considered.

7.
Proc Biol Sci ; 290(2009): 20231965, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876196

ABSTRACT

Understanding the ecological and evolutionary processes that drive host-pathogen interactions is critical for combating epidemics and conserving species. The Varroa destructor mite and deformed wing virus (DWV) are two synergistic threats to Western honeybee (Apis mellifera) populations across the globe. Distinct honeybee populations have been found to self-sustain despite Varroa infestations, including colonies within the Arnot Forest outside Ithaca, NY, USA. We hypothesized that in these bee populations, DWV has been selected to produce an avirulent infection phenotype, allowing for the persistence of both host and disease-causing agents. To investigate this, we assessed the titre of viruses in bees from the Arnot Forest and managed apiaries, and assessed genomic variation and virulence differences between DWV isolates. Across groups, we found viral abundance was similar, but DWV genotypes were distinct. We also found that infections with isolates from the Arnot Forest resulted in higher survival and lower rates of symptomatic deformed wings, compared to analogous isolates from managed colonies, providing preliminary evidence to support the hypothesis of adaptive decreased viral virulence. Overall, this multi-level investigation of virus genotype and phenotype indicates that host ecological context can be a significant driver of viral evolution and host-pathogen interactions in honeybees.


Subject(s)
RNA Viruses , Varroidae , Bees , Animals , Virulence , RNA Viruses/genetics , Host-Pathogen Interactions
8.
Mol Ecol ; 32(21): 5823-5837, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37746895

ABSTRACT

Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.

9.
J Exp Biol ; 226(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37578032

ABSTRACT

Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat - bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes.


Subject(s)
Hypothermia, Induced , Thermotolerance , Bees , Animals , Food , Feeding Behavior
10.
BMC Genomics ; 24(1): 315, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308882

ABSTRACT

Conflict between genes inherited from the mother (matrigenes) and the father (patrigenes) is predicted to arise during social interactions among offspring if these genes are not evenly distributed among offspring genotypes. This intragenomic conflict drives parent-specific transcription patterns in offspring resulting from parent-specific epigenetic modifications. Previous tests of the kinship theory of intragenomic conflict in honey bees (Apis mellifera) provided evidence in support of theoretical predictions for variation in worker reproduction, which is associated with extreme variation in morphology and behavior. However, more subtle behaviors - such as aggression - have not been extensively studied. Additionally, the canonical epigenetic mark (DNA methylation) associated with parent-specific transcription in plant and mammalian model species does not appear to play the same role as in honey bees, and thus the molecular mechanisms underlying intragenomic conflict in this species is an open area of investigation. Here, we examined the role of intragenomic conflict in shaping aggression in honey bee workers through a reciprocal cross design and Oxford Nanopore direct RNA sequencing. We attempted to probe the underlying regulatory basis of this conflict through analyses of parent-specific RNA m6A and alternative splicing patterns. We report evidence that intragenomic conflict occurs in the context of honey bee aggression, with increased paternal and maternal allele-biased transcription in aggressive compared to non-aggressive bees, and higher paternal allele-biased transcription overall. However, we found no evidence to suggest that RNA m6A or alternative splicing mediate intragenomic conflict in this species.


Subject(s)
Aggression , RNA , Bees , Animals , DNA Methylation , Alleles , Alternative Splicing , Mammals
11.
Environ Entomol ; 52(3): 491-501, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37133965

ABSTRACT

Bumble bees (Hymenoptera: Apidae, Bombus Latreille) perform important ecological services in both managed and natural ecosystems. Anthropogenically induced change has altered floral resources, climate, and insecticide exposure, factors that impact health and disease levels in these bees. Habitat management presents a solution for improving bee health and biodiversity, but this requires better understanding of how different pathogens and bee species respond to habitat conditions. We take advantage of the washboard of repeated ridges (forested) and valleys (mostly developed) in central Pennsylvania to examine whether local variation in habitat type and other landscape factors influence bumble bee community composition and levels of 4 leading pathogens in the common eastern bumble bee, Bombus impatiens Cresson. Loads of viruses (DWV and BQCV) were found to be lowest in forest habitats, whereas loads of a gut parasite, Crithidia bombi, were highest in forests. Ridgetop forests hosted the most diverse bumble bee communities, including several habitat specialists. B. impatiens was most abundant in valleys, and showed higher incidence in areas of greater disturbance, including more developed, unforested, and lower floral resource sites, a pattern which mirrors its success in the face of anthropogenic change. Additionally, DNA barcoding revealed that B. sandersoni is much more common than is apparent from databases. Our results provide evidence that habitat type can play a large role in pathogen load dynamics, but in ways that differ by pathogen type, and point to a need for consideration of habitat at both macro-ecological and local spatial scales.


Subject(s)
Hymenoptera , Moths , Bees , Animals , Ecosystem , Forests , Biodiversity
12.
Mol Ecol Resour ; 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37002860

ABSTRACT

Landscape transcriptomics is an emerging field studying how genome-wide expression patterns reflect dynamic landscape-scale environmental drivers, including habitat, weather, climate, and contaminants, and the subsequent effects on organismal function. This field is benefitting from advancing and increasingly accessible molecular technologies, which in turn are allowing the necessary characterization of transcriptomes from wild individuals distributed across natural landscapes. This research is especially important given the rapid pace of anthropogenic environmental change and potential impacts that span levels of biological organization. We discuss three major themes in landscape transcriptomic research: connecting transcriptome variation across landscapes to environmental variation, generating and testing hypotheses about the mechanisms and evolution of transcriptomic responses to the environment, and applying this knowledge to species conservation and management. We discuss challenges associated with this approach and suggest potential solutions. We conclude that landscape transcriptomics has great promise for addressing fundamental questions in organismal biology, ecology, and evolution, while providing tools needed for conservation and management of species.

13.
J Environ Manage ; 325(Pt A): 116416, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36244287

ABSTRACT

Interactive maps can serve as powerful environmental decision-support tools. However, designing an interactive map that meets the needs of diverse constituencies is a challenge. In this article, we evaluate and characterize user needs for an interactive map and spatial decision-support tool called Beescape. Beescape is designed to visualize resources and environmental risks to bees and other pollinators (such as availability of nutritional resources from flowering plants and exposure to pesticides) in order to help users make informed decisions about managing bee populations and associated landscapes. We conducted a needs assessment workshop with twenty stakeholders from four user groups including beekeepers, growers, conservationists, and pollinator scientists to elicit their knowledge to guide future Beescape development. The results of the workshop identify current analytical gaps with the existing Beescape prototype, including the need for predictive and historical tools, more actionable data layers, finer-grain spatial data, and better explanations on what data represent and how they were created. Our findings on user's analytical, informational, and interface needs can be utilized to guide the future development of spatial decision support tools like Beescape, and our methodological approach may apply to other environmental informatics tools where it is important to design for multiple constituent user groups.


Subject(s)
Pesticides , Bees , Animals
14.
Sci Rep ; 12(1): 21802, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526706

ABSTRACT

Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition. We evaluated how these traits affect bumble bee (Bombus impatiens, an important cucumber pollinator) visitation and ultimately fruit yield. While increasing nitrogen and phosphorus increased growth and floral display, excess nitrogen created an asymptotic or negative effect, which was mitigated by increasing phosphorus. Male floral traits exhibited higher plasticity in responses to changes in soil nutrients than female flowers. At 4:1 nitrogen:phosphorus ratios, male flowers presented increased nectar volume and pollen number resulting in increased bumble bee visitation. Interestingly, other pollinator rewards remained consistent across all soil treatments: male and female nectar sugar composition, female nectar volume, and pollen protein and lipid concentrations. Therefore, although cucumber pollination success was buffered in conditions of nutrient stress, highly skewed nitrogen:phosphorus soil ratios reduced plant fitness via reduced numbers of flowers and reward quantity, pollinator attraction, and ultimately yield.


Subject(s)
Cucumis sativus , Plant Nectar , Bees , Animals , Soil , Pollination/physiology , Flowers/physiology , Plants , Phosphorus , Nitrogen
15.
Sci Data ; 9(1): 571, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114185

ABSTRACT

Wild and managed pollinators are essential to food production and the function of natural ecosystems; however, their populations are threatened by multiple stressors including pesticide use. Because pollinator species can travel hundreds to thousands of meters to forage, recent research has stressed the importance of evaluating pollinator decline at the landscape scale. However, scientists' and conservationists' ability to do this has been limited by a lack of accessible data on pesticide use at relevant spatial scales and in toxicological units meaningful to pollinators. Here, we synthesize information from several large, publicly available datasets on pesticide use patterns, land use, and toxicity to generate novel datasets describing pesticide use by active ingredient (kg, 1997-2017) and aggregate insecticide load (kg and honey bee lethal doses, 1997-2014) for state-crop combinations in the contiguous U.S. Furthermore, by linking pesticide datasets with land-use data, we describe a method to map pesticide indicators at spatial scales relevant to pollinator research and conservation.


Subject(s)
Agriculture , Insecticides , Pesticides , Pollination , Agriculture/methods , Animals , Bees , Conservation of Natural Resources , Ecosystem
16.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36137211

ABSTRACT

Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variability. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species. Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability. In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteristics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has reshaped the molecular mechanisms concerning the regulation of gene expression variability.


Subject(s)
DNA Methylation , Drosophila melanogaster , Animals , Bees/genetics , Drosophila melanogaster/genetics , Promoter Regions, Genetic , Epigenesis, Genetic , Genomics , Genes, Insect
17.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210423, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35491589

ABSTRACT

Many environmental factors impact plant and pollinator communities. However, variation in soil moisture and how it mediates the plant-pollinator interactions has yet to be elucidated. We hypothesized that long-term variation in soil moisture can exert a strong selective pressure on the floral and vegetative traits of plants, leading to changes in pollinator visitation. We demonstrated that there are three phenotypic populations of Gentiana aristata in our study alpine region in the Qinghai-Tibetan Plateau that vary in floral colour and other traits. Pink (dry habitat) and blue (intermediate habitat) flower populations are visited primarily by bumblebees, and white (wet habitat) flower populations are visited by flies. These patterns of visitation are driven by vegetative and floral traits and are constant when non-endemic plants are placed in the intermediate habitats. Additionally, the floral communities in different habitats vary, with more insect-pollinated forbs in the dry and intermediate habitats versus the wet habitats. Through a common garden and reciprocal transplant experiment, we demonstrated that plant growth traits, pollinator attractiveness and seed production are highest when the plant population is raised in its endemic habitat. This suggests that these plant populations have evolved to pollinator communities associated with habitat differences. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Subject(s)
Magnoliopsida , Animals , Flowers , Plants , Pollination , Soil
18.
Mol Ecol ; 31(1): 174-184, 2022 01.
Article in English | MEDLINE | ID: mdl-34643007

ABSTRACT

Faced with adverse conditions, such as winter in temperate regions or hot and dry conditions in tropical regions, many insect species enter a state of diapause, a period of dormancy associated with a reduction or arrest of physical activity, development and reproduction. Changes in common physiological pathways underlie diapause phenotypes in different insect species. However, most transcriptomic studies of diapause have not simultaneously evaluated and compared expression patterns in different tissues. Honey bees (Apis mellifera) represent a unique model system to study the mechanisms underpinning diapause-related phenotypes. In winter, honey bees exhibit a classic diapause phenotype, with reduced metabolic activity, increased physiological nutritional resources and altered hormonal profiles. However, winter bees actively heat their colony by vibrating their wing muscles; thus, this tissue is not quiescent. Here, we evaluated the transcriptional profiles of flight muscle tissue and fat body tissue (involved in nutrient storage, metabolism and immune function) of winter bees. We also evaluated two behavioural phenotypes of summer bees: nurses, which exhibit high nutritional stores and low flight activity, and foragers, which exhibit low nutritional stores and high flight activity. We found winter bees and nurses have similar fat body transcriptional profiles, whereas winter bees and foragers have similar flight muscle transcriptional profiles. Additionally, differentially expressed genes were enriched in diapause-related gene ontology terms. Thus, honey bees exhibit tissue-specific transcriptional profiles associated with seasonal phenotypes, laying the groundwork for future studies evaluating the mechanisms, evolution and consequences of this tissue-specific regulation.


Subject(s)
Transcriptome , Animals , Bees/genetics , Phenotype , Seasons
19.
Front Insect Sci ; 2: 864238, 2022.
Article in English | MEDLINE | ID: mdl-38468781

ABSTRACT

Honey bees collect nectar and pollen to fulfill their nutritional demands. In particular, pollen can influence longevity, the development of hypopharyngeal glands, and immune-competence of bees. Pollen can also mitigate the deleterious effects caused by the parasitic mite Varroa destructor and related deformed wing virus (DWV) infections. It has been shown that V. destructor accelerates the physiological and behavioral maturation of honey bees by influencing the interaction between two core physiological factors, Vitellogenin and juvenile hormone. In this study, we test the hypothesis that the beneficial effects of pollen on Varroa-infested bees are related to the hormonal control underpinning behavioral maturation. By analyzing the expression of genes associated to behavioral maturation in pollen-fed mite-infested bees, we show that treatment with pollen increases the lifespan of mite-infested bees by reversing the faster maturation induced by the parasite at the gene expression level. As expected, from the different immune-competence of nurse and forager bees, the lifespan extension triggered by pollen is also correlated with a positive influence of antimicrobial peptide gene expression and DWV load, further reinforcing the beneficial effect of pollen. This study lay the groundwork for future analyses of the underlying evolutionary processes and applications to improve bee health.

20.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34816791

ABSTRACT

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5' IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.


Subject(s)
Arachnid Vectors/virology , Bees/virology , RNA Viruses/physiology , Varroidae/virology , Animals , Mutation , Pupa/virology , RNA Viruses/classification , RNA Viruses/genetics , RNA Viruses/growth & development , Serial Passage
SELECTION OF CITATIONS
SEARCH DETAIL
...