Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 362(6416): 834-839, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30442810

ABSTRACT

The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-α-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzimidazoles/pharmacology , DNA Glycosylases/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Gene Expression/drug effects , Inflammation/drug therapy , Piperidines/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzimidazoles/therapeutic use , DNA Glycosylases/metabolism , DNA Repair/drug effects , DNA Repair/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , Guanine/analogs & derivatives , Guanine/antagonists & inhibitors , Guanine/metabolism , HEK293 Cells , Humans , Inflammation/genetics , Jurkat Cells , Mice , Mice, Mutant Strains , NF-kappa B/genetics , NF-kappa B/metabolism , Piperidines/therapeutic use , Promoter Regions, Genetic , Tumor Necrosis Factor-alpha/pharmacology
2.
DNA Repair (Amst) ; 71: 118-126, 2018 11.
Article in English | MEDLINE | ID: mdl-30228084

ABSTRACT

Base excision repair (BER) repairs mutagenic or genotoxic DNA base lesions, thought to be important for both the etiology and treatment of cancer. Cancer phenotypic stress induces oxidative lesions, and deamination products are responsible for one of the most prevalent mutational signatures in cancer. Chemotherapeutic agents induce genotoxic DNA base damage that are substrates for BER, while synthetic lethal approaches targeting BER-related factors are making their way into the clinic. Thus, there are three strategies by which BER is envisioned to be relevant in cancer chemotherapy: (i) to maintain cellular growth in the presence of endogenous DNA damage in stressed cancer cells, (ii) to maintain viability after exogenous DNA damage is introduced by therapeutic intervention, or (iii) to confer synthetic lethality in cancer cells that have lost one or more additional DNA repair pathways. Here, we discuss the potential treatment strategies, and briefly summarize the progress that has been made in developing inhibitors to core BER-proteins and related factors.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair/drug effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , DNA/metabolism , DNA Damage , Humans , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/metabolism
3.
Chemistry ; 24(13): 3271-3282, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29314341

ABSTRACT

Trypanosoma brucei uses variant surface glycoproteins (VSGs) to evade the host immune system and ensure parasitic longevity in animals and humans. VSGs are attached to the cell membrane by complex glycosylphosphatidylinositol anchors (GPI). Distinguishing structural feature of VSG GPIs are multiple α- and ß-galactosides attached to the conserved GPI core structure. T. brucei GPIs have been associated with macrophage activation and alleviation of parasitemia during infection, acting as disease onset delaying antigens. Literature reports that link structural modifications in the GPIs to changes in biological activity are contradictory. We have established a synthetic route to prepare structurally overlapping GPI derivatives bearing different T. brucei characteristic structural modifications. The GPI collection will be used to assess the effect of galactosylation and phosphorylation on T. brucei GPI immunomodulatory activity, and to perform an epitope mapping of this complex glycolipid as potential diagnostic marker for Trypanosomiasis. A strategy for the synthesis of a complete α-tetragalactoside using the 2-naphthylmethyl protecting group and for subsequent attachment of GPI fragments to peptides is presented.


Subject(s)
Glycolipids/chemical synthesis , Glycosylphosphatidylinositols/chemical synthesis , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism , Animals , Cell Membrane/metabolism , Glycolipids/metabolism , Glycosylphosphatidylinositols/chemistry , Membrane Glycoproteins/metabolism , Molecular Structure , Trypanosoma brucei brucei/chemistry , Variant Surface Glycoproteins, Trypanosoma/chemistry
4.
ACS Chem Biol ; 11(9): 2407-13, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27458873

ABSTRACT

C-type lectin receptors (CLRs) play a pivotal role in pathogen defense and immune homeostasis. Langerin, a CLR predominantly expressed on Langerhans cells, represents a potential target receptor for the development of anti-infectives or immunomodulatory therapies. As mammalian carbohydrate binding sites typically display high solvent exposure and hydrophilicity, the recognition of natural monosaccharide ligands is characterized by low affinities. Consequently, glycomimetic ligand design poses challenges that extend to the development of suitable assays. Here, we report the first application of (19)F R2-filtered NMR to address these challenges for a CLR, i.e., Langerin. The homogeneous, monovalent assay was essential to evaluating the in silico design of 2-deoxy-2-carboxamido-α-mannoside analogs and enabled the implementation of a fragment screening against the carbohydrate binding site. With the identification of both potent monosaccharide analogs and fragment hits, this study represents an important advancement toward the design of glycomimetic Langerin ligands and highlights the importance of assay development for other CLRs.


Subject(s)
Antigens, CD/chemistry , Carbohydrates/chemistry , Fluorine/chemistry , Lectins, C-Type/chemistry , Mannose-Binding Lectins/chemistry , Molecular Mimicry , Binding Sites , Ligands , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...