Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302688, 2024.
Article in English | MEDLINE | ID: mdl-38809856

ABSTRACT

The sweat bee Halictus rubicundus is an important pollinator with a large latitudinal range and many potential barriers to gene flow. Alongside typical physical barriers, including mountain ranges and oceans, the climate may also impose restrictions on gene flow in this species. The climate influences voltinism and sociality in H. rubicundus, which is bivoltine and can nest socially at warmer lower latitudes but tends to be univoltine and solitary in the cooler north. Variation in voltinism could result in phenological differences, potentially limiting gene flow, but a previous study found no evidence for this in H. rubicundus populations in mainland Britain. Here we extend the previous study to consider populations of H. rubicundus at extreme northern and southern latitudes in the UK. We found that bees from a population in the far north of Scotland were genetically differentiated from bees collected in Cornwall in the south-west of England. In contrast, bees collected across the Irish Sea in Northern Ireland showed slight genetic overlap with both the Scottish and Cornish bees. Our results suggest that when populations at extreme latitudes are considered, phenology and the climate may act alongside physical barriers such as the Scottish Highlands and the Irish Sea to restrict gene flow in H. rubicundus. We discuss the implications of our results for local adaptation in the face of rapidly changing selection pressures which are likely under climate change.


Subject(s)
Gene Flow , Animals , Bees/genetics , Bees/physiology , Genetic Variation , Microsatellite Repeats/genetics , Scotland , Genetics, Population
2.
PLoS One ; 17(10): e0276428, 2022.
Article in English | MEDLINE | ID: mdl-36264953

ABSTRACT

Eusociality, where workers typically forfeit their own reproduction to assist their mothers in raising siblings, is a fundamental paradox in evolutionary biology. By sacrificing personal reproduction, helpers pay a significant cost, which must be outweighed by indirect fitness benefits of helping to raise siblings. In 1983, Jon Seger developed a model showing how in the haplodiploid Hymenoptera (ants, wasps and bees), a partially bivoltine life cycle with alternating sex ratios may have promoted the evolution of eusociality. Seger predicted that eusociality would be more likely to evolve in hymenopterans where a foundress produces a male-biased first brood sex ratio and a female-biased second brood. This allows first brood females to capitalize on super-sister relatedness through helping to produce the female-biased second brood. In Seger's model, the key factor driving alternating sex ratios was that first brood males survive to mate with females of both the second and the first brood, reducing the reproductive value of second brood males. Despite being potentially critical in the evolution of eusociality, however, male survivorship has received little empirical attention. Here, we tested whether first brood males survive across broods in the facultatively eusocial sweat bee Halictus rubicundus. We obtained high estimates of survival and, while recapture rates were low, at least 10% of first brood males survived until the second brood. We provide empirical evidence supporting Seger's model. Further work, measuring brood sex ratios and comparing abilities of first and second brood males to compete for fertilizations, is required to fully parameterize the model.


Subject(s)
Biological Evolution , Wasps , Bees , Male , Female , Animals , Social Behavior , Sweat , Survivorship , Models, Biological , Reproduction
3.
Mol Ecol ; 31(19): 4949-4961, 2022 10.
Article in English | MEDLINE | ID: mdl-35894800

ABSTRACT

Gene expression levels are key molecular phenotypes at the interplay between genotype and environment. Mounting evidence suggests that short-term changes in environmental conditions, such as those encountered in captivity, can substantially affect gene expression levels. Yet, the exact magnitude of this effect, how general it is, and whether it results in parallel changes across populations are not well understood. Here, we take advantage of the well-studied cane toad, Rhinella marina, to examine the effect of short-term captivity on brain gene expression levels, and determine whether effects of captivity differ between long-colonized and vanguard populations of the cane toad's Australian invasion range. We compared the transcriptomes of wild-caught toads immediately assayed with those from toads captured from the same populations but maintained in captivity for seven months. We found large differences in gene expression levels between captive and wild-caught toads from the same population, with an over-representation of processes related to behaviour and the response to stress. Captivity had a much larger effect on both gene expression levels and gene expression variability in toads from vanguard populations compared to toads from long-colonized areas, potentially indicating an increased plasticity in toads at the leading edge of the invasion. Overall, our findings indicate that short-term captivity can induce large and population-specific transcriptomic changes, which has significant implications for studies comparing phenotypic traits of wild-caught organisms from different populations that have been held in captivity.


Subject(s)
Poaceae , Transcriptome , Animals , Australia , Brain , Bufo marinus/genetics , Introduced Species , Transcriptome/genetics
4.
R Soc Open Sci ; 5(4): 180197, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29765696

ABSTRACT

Invasive species must deal with novel challenges, both from the alien environment and from pressures arising from range expansion per se (e.g. spatial sorting). Those conditions can create geographical variation in behaviour across the invaded range, as has been documented across regions of Australia invaded by cane toads; range-edge toads are more exploratory and willing to take risks than are conspecifics from the range-core. That behavioural divergence might be a response to range expansion and invasion per se, or to the different environments encountered. Climate differs across the cane toads' invasion range from the wet tropics of Queensland to the seasonally dry climates of northwestern Western Australia. The different thermal and hydric regimes may affect behavioural traits via phenotypic plasticity or through natural selection. We cannot tease apart the effects of range expansion versus climate in an expanding population but can do so in a site where the colonizing species was simultaneously released in all suitable areas, thus removing any subsequent phase of range expansion. Cane toads were introduced to Hawai'i in 1932; and thence to Australia in 1935. Toads were released in all major sugarcane-growing areas in Hawai'i within a 12-month period. Hence, Hawai'ian cane toads provide an opportunity to examine geographical divergence in behavioural traits in a climatically diverse region (each island has both wet and dry sides) in the absence of range expansion subsequent to release. We conducted laboratory-based behavioural trials testing exploration, risk-taking and response to novelty using field-caught toads from the wet and dry sides of two Hawai'ian islands (Oahu and Hawai'i). Toads from the dry side of Oahu had a higher propensity to take risks than did toads from the dry side of Hawai'i. Toads from Oahu were also more exploratory than were conspecifics from the island of Hawai'i. However, toads from wet versus dry climates were similar in all behaviours that we scored, suggesting that founder effects, genetic drift, or developmentally plastic responses to ecological factors other than climate may have driven behavioural divergence between islands.

5.
Behav Processes ; 153: 40-46, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29729410

ABSTRACT

Behavioural responses to repeated trials in captivity can be driven by many factors including rearing environment, population of origin, habituation to captivity/trial conditions and an individual's behavioural type (e.g., bold versus shy). We tested the effect of rearing environment (captive raised common-garden versus wild-caught) and population origin (range-edge versus range-front) on the responses of invasive cane toads (Rhinella marina) to repeated exploration and risk-taking assays in captivity. We found that behavioural responses to identical assays performed on two occasions were complex and showed few consistent patterns based on rearing environment or population of origin. However, behavioural traits were repeatable across Trial Blocks when all sample populations were grouped together, indicating general consistency in individual toad behaviour across repeated behavioural assays. Our findings exemplify the complexity and unpredictability of behavioural responses and their effects on the repeatability and interpretation of behavioural traits across repeated behavioural assays in captivity. To meaningfully interpret the results from repeated behavioural assays, we need to consider how multiple factors may affect behavioural responses to these tests and importantly, how these responses may affect the repeatability of behavioural traits across time.


Subject(s)
Behavior, Animal/physiology , Behavioral Research , Bufo marinus/physiology , Environment , Exploratory Behavior/physiology , Risk-Taking , Animals , Female , Male
6.
Biol Lett ; 13(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-29118242

ABSTRACT

Individuals at the leading edge of a biological invasion constantly encounter novel environments. These pioneers may benefit from increased social attraction, because low population densities reduce competition and risks of pathogen transfer, and increase benefits of information transfer. In standardized trials, cane toads (Rhinella marina) from invasion-front populations approached conspecifics more often, and spent more time close to them, than did conspecifics from high-density, long-colonized populations.


Subject(s)
Bufo marinus/physiology , Introduced Species , Social Behavior , Animals , Australia , Behavior, Animal , Female , Hawaii , Male , Sex Factors
7.
R Soc Open Sci ; 4(10): 170789, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29134082

ABSTRACT

Individuals at the leading edge of expanding biological invasions often show distinctive phenotypic traits, in ways that enhance their ability to disperse rapidly and to function effectively in novel environments. Cane toads (Rhinella marina) at the invasion front in Australia exhibit shifts in morphology, physiology and behaviour (directionality of dispersal, boldness, risk-taking). We took a common-garden approach, raising toads from range-core and range-edge populations in captivity, to see if the behavioural divergences observed in wild-caught toads are also evident in common-garden offspring. Captive-raised toads from the invasion vanguard population were more exploratory and bolder (more prone to 'risky' behaviours) than toads from the range core, which suggests that these are evolved, genetic traits. Our study highlights the importance of behaviour as being potentially adaptive in invasive populations and adds these behavioural traits to the increasing list of phenotypic traits that have evolved rapidly during the toads' 80-year spread through tropical Australia.

SELECTION OF CITATIONS
SEARCH DETAIL
...