Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Mol Psychiatry ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

3.
J Affect Disord ; 355: 12-21, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548192

ABSTRACT

BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.


Subject(s)
Depression , Depressive Disorder, Major , Humans , Depression/etiology , Depressive Disorder, Major/epidemiology , Protective Factors , Cross-Sectional Studies , Self Report
4.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38198165

ABSTRACT

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Subject(s)
Depressive Disorder, Major , Humans , Female , Male , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Diffusion Tensor Imaging , Cohort Studies , Reproducibility of Results , Magnetic Resonance Imaging , Biomarkers
5.
Biol Psychiatry ; 95(7): 629-638, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37207935

ABSTRACT

BACKGROUND: The psychopathological syndrome of formal thought disorder (FTD) is not only present in schizophrenia (SZ), but also highly prevalent in major depressive disorder and bipolar disorder. It remains unknown how alterations in the structural white matter connectome of the brain correlate with psychopathological FTD dimensions across affective and psychotic disorders. METHODS: Using FTD items of the Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms, we performed exploratory and confirmatory factor analyses in 864 patients with major depressive disorder (n= 689), bipolar disorder (n = 108), or SZ (n = 67) to identify psychopathological FTD dimensions. We used T1- and diffusion-weighted magnetic resonance imaging to reconstruct the structural connectome of the brain. To investigate the association of FTD subdimensions and global structural connectome measures, we employed linear regression models. We used network-based statistic to identify subnetworks of white matter fiber tracts associated with FTD symptomatology. RESULTS: Three psychopathological FTD dimensions were delineated, i.e., disorganization, emptiness, and incoherence. Disorganization and incoherence were associated with global dysconnectivity. Network-based statistics identified subnetworks associated with the FTD dimensions disorganization and emptiness but not with the FTD dimension incoherence. Post hoc analyses on subnetworks did not reveal diagnosis × FTD dimension interaction effects. Results remained stable after correcting for medication and disease severity. Confirmatory analyses showed a substantial overlap of nodes from both subnetworks with cortical brain regions previously associated with FTD in SZ. CONCLUSIONS: We demonstrated white matter subnetwork dysconnectivity in major depressive disorder, bipolar disorder, and SZ associated with FTD dimensions that predominantly comprise brain regions implicated in speech. Results open an avenue for transdiagnostic, psychopathology-informed, dimensional studies in pathogenetic research.


Subject(s)
Depressive Disorder, Major , Frontotemporal Dementia , Psychotic Disorders , Schizophrenia , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/complications , Frontotemporal Dementia/complications , Psychotic Disorders/psychology , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/pathology , Magnetic Resonance Imaging
6.
Hum Brain Mapp ; 45(4): e26543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069537

ABSTRACT

The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.


Subject(s)
Brain , Connectome , Humans , Brain/physiology , Connectome/methods , Neural Pathways/physiology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging
7.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37859592

ABSTRACT

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizotypal Personality Disorder , Self Report , Adult , Male , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Schizotypal Personality Disorder/diagnostic imaging , Schizotypal Personality Disorder/psychology , Brain/diagnostic imaging , Gray Matter , Magnetic Resonance Imaging/methods
8.
Psychol Med ; 54(5): 940-950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37681274

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS: In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS: Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS: Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Electroconvulsive Therapy/methods , Depression , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
9.
Front Aging Neurosci ; 15: 1085153, 2023.
Article in English | MEDLINE | ID: mdl-37920384

ABSTRACT

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

10.
Lancet Psychiatry ; 10(12): 955-965, 2023 12.
Article in English | MEDLINE | ID: mdl-37844592

ABSTRACT

BACKGROUND: Narcissistic personality traits have been theorised to negatively affect depressive symptoms, therapeutic alliance, and treatment outcome, even in the absence of narcissistic personality disorder. We aimed to examine how the dimensional narcissistic facets of admiration and rivalry affect depressive symptoms across treatment modalities in two transdiagnostic samples. METHODS: We did a naturalistic, observational prospective cohort study in two independent adult samples in Germany: one sample pooled from an inpatient psychiatric clinic and an outpatient treatment service offering cognitive behavioural treatment (CBT), and one sample from an inpatient clinic providing psychoanalytic interactional therapy (PIT). Inpatients treated with CBT had an affective or psychotic disorder. For the other two sites, data from all service users were collected. We examined the effect of core narcissism and its facets admiration and rivalry, measured by Narcissistic Admiration and Rivalry Questionnaire-short version, on depressive symptoms, measured by Beck's Depression Inventory and Patient Health Questionnaire-Depression Scale, at baseline and after treatment in patients treated with CBT and PIT. Primary analyses were regression models, predicting baseline and post-treatment depression severity from core narcissism and its facets. Mediation analysis was done in the outpatient CBT group for the effect of the therapeutic alliance on the association between narcissism and depression severity after treatment. FINDINGS: The sample included 2371 patients (1423 [60·0%] female and 948 [40·0%] male; mean age 33·13 years [SD 13·19; range 18-81), with 517 inpatients and 1052 outpatients in the CBT group, and 802 inpatients in the PIT group. Ethnicity data were not collected. Mean treatment duration was 300 days (SD 319) for CBT and 67 days (SD 26) for PIT. Core narcissism did not predict depression severity before treatment in either group, but narcissistic rivalry was associated with higher depressive symptom load at baseline (ß 2·47 [95% CI 1·78 to 3·12] for CBT and 1·05 [0·54 to 1·55] for PIT) and narcissistic admiration showed the opposite effect (-2·02 [-2·62 to -1·41] for CBT and -0·64 [-1·11 to -0·17] for PIT). Poorer treatment response was predicted by core narcissism (ß 0·79 [0·10 to 1·47]) and narcissistic rivalry (0·89 [0·19 to 1·58]) in CBT, whereas admiration showed no effect. No effect of narcissism on treatment outcome was discernible in PIT. Therapeutic alliance mediated the effect of narcissism on post-treatment depression severity in the outpatient CBT sample. INTERPRETATION: As narcissism affects depression severity before and after treatment with CBT across psychiatric disorders, even in the absence of narcissistic personality disorder, the inclusion of dimensional assessments of narcissism should be considered in future research and clinical routines. The relevance of the therapeutic alliance and therapeutic strategy could be used to guide treatment approaches. FUNDING: IZKF Münster. TRANSLATION: For the German translation of the abstract see Supplementary Materials section.


Subject(s)
Mental Disorders , Narcissism , Adult , Humans , Male , Female , Depression/therapy , Prospective Studies , Germany
11.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808808

ABSTRACT

A broad range of neuropsychiatric disorders are associated with alterations in macroscale brain circuitry and connectivity. Identifying consistent brain patterns underlying these disorders by means of structural and functional MRI has proven challenging, partly due to the vast number of tests required to examine the entire brain, which can lead to an increase in missed findings. In this study, we propose polyconnectomic score (PCS) as a metric designed to quantify the presence of disease-related brain connectivity signatures in connectomes. PCS summarizes evidence of brain patterns related to a phenotype across the entire landscape of brain connectivity into a subject-level score. We evaluated PCS across four brain disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 individuals. Our findings consistently show that patients exhibit significantly higher PCS compared to controls, with effect sizes that go beyond other single MRI metrics ([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate that PCS serves as a valuable tool for stratifying individuals, for example within the psychosis continuum, distinguishing patients with schizophrenia from their first-degree relatives (d = 0.42, p = 4 × 10-3, FDR-corrected), and first-degree relatives from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS is useful to uncover associations between brain connectivity patterns related to neuropsychiatric disorders and mental health, psychosocial factors, and body measurements.

12.
Mol Psychiatry ; 28(11): 4613-4621, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714950

ABSTRACT

Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.


Subject(s)
Child Abuse , Connectome , Psychological Tests , Self Report , White Matter , Adult , Humans , Child , Connectome/methods , Magnetic Resonance Imaging , Brain
13.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36874281

ABSTRACT

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

14.
Psychol Med ; : 1-12, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752136

ABSTRACT

BACKGROUND: Cognitive dysfunction and brain structural connectivity alterations have been observed in major depressive disorder (MDD). However, little is known about their interrelation. The present study follows a network approach to evaluate alterations in cognition-related brain structural networks. METHODS: Cognitive performance of n = 805 healthy and n = 679 acutely depressed or remitted individuals was assessed using 14 cognitive tests aggregated into cognitive factors. The structural connectome was reconstructed from structural and diffusion-weighted magnetic resonance imaging. Associations between global connectivity strength and cognitive factors were established using linear regressions. Network-based statistics were applied to identify subnetworks of connections underlying these global-level associations. In exploratory analyses, effects of depression were assessed by evaluating remission status-related group differences in subnetwork-specific connectivity. Partial correlations were employed to directly test the complete triad of cognitive factors, depressive symptom severity, and subnetwork-specific connectivity strength. RESULTS: All cognitive factors were associated with global connectivity strength. For each cognitive factor, network-based statistics identified a subnetwork of connections, revealing, for example, a subnetwork positively associated with processing speed. Within that subnetwork, acutely depressed patients showed significantly reduced connectivity strength compared to healthy controls. Moreover, connectivity strength in that subnetwork was associated to current depressive symptom severity independent of the previous disease course. CONCLUSIONS: Our study is the first to identify cognition-related structural brain networks in MDD patients, thereby revealing associations between cognitive deficits, depressive symptoms, and reduced structural connectivity. This supports the hypothesis that structural connectome alterations may mediate the association of cognitive deficits and depression severity.

15.
Biol Psychiatry ; 94(2): 174-183, 2023 07 15.
Article in English | MEDLINE | ID: mdl-36803976

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric conditions that can involve symptoms of psychosis and cognitive dysfunction. The 2 conditions share symptomatology and genetic etiology and are regularly hypothesized to share underlying neuropathology. Here, we examined how genetic liability to SCZ and BD shapes normative variations in brain connectivity. METHODS: We examined the effect of the combined genetic liability for SCZ and BD on brain connectivity from two perspectives. First, we examined the association between polygenic scores for SCZ and BD for 19,778 healthy subjects from the UK Biobank and individual variation in brain structural connectivity reconstructed by means of diffusion weighted imaging data. Second, we conducted genome-wide association studies using genotypic and imaging data from the UK Biobank, taking SCZ-/BD-involved brain circuits as phenotypes of interest. RESULTS: Our findings showed brain circuits of superior parietal and posterior cingulate regions to be associated with polygenic liability for SCZ and BD, circuitry that overlaps with brain networks involved in disease conditions (r = 0.239, p < .001). Genome-wide association study analysis showed 9 significant genomic loci associated with SCZ-involved circuits and 14 loci associated with BD-involved circuits. Genes related to SCZ-/BD-involved circuits were significantly enriched in gene sets previously reported in genome-wide association studies for SCZ and BD. CONCLUSIONS: Our findings suggest that polygenic liability of SCZ and BD is associated with normative individual variation in brain circuitry.


Subject(s)
Bipolar Disorder , Connectome , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Bipolar Disorder/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease
16.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36712107

ABSTRACT

Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.

17.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Article in English | MEDLINE | ID: mdl-36639510

ABSTRACT

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Subject(s)
Connectome , Depressive Disorder, Major , Humans , Diffusion Tensor Imaging , Genetic Predisposition to Disease , Magnetic Resonance Imaging/methods , Brain
18.
Psychol Med ; 53(10): 4592-4602, 2023 07.
Article in English | MEDLINE | ID: mdl-35833369

ABSTRACT

BACKGROUND: Patients with bipolar disorder (BD) show reduced fractional anisotropy (FA) compared to patients with major depressive disorder (MDD). Little is known about whether these differences are mood state-independent or influenced by acute symptom severity. Therefore, the aim of this study was (1) to replicate abnormalities in white matter microstructure in BD v. MDD and (2) to investigate whether these vary across depressed, euthymic, and manic mood. METHODS: In this cross-sectional diffusion tensor imaging study, n = 136 patients with BD were compared to age- and sex-matched MDD patients and healthy controls (HC) (n = 136 each). Differences in FA were investigated using tract-based spatial statistics. Using interaction models, the influence of acute symptom severity and mood state on the differences between patient groups were tested. RESULTS: Analyses revealed a main effect of diagnosis on FA across all three groups (ptfce-FWE = 0.003). BD patients showed reduced FA compared to both MDD (ptfce-FWE = 0.005) and HC (ptfce-FWE < 0.001) in large bilateral clusters. These consisted of several white matter tracts previously described in the literature, including commissural, association, and projection tracts. There were no significant interaction effects between diagnosis and symptom severity or mood state (all ptfce-FWE > 0.704). CONCLUSIONS: Results indicated that the difference between BD and MDD was independent of depressive and manic symptom severity and mood state. Disruptions in white matter microstructure in BD might be a trait effect of the disorder. The potential of FA values to be used as a biomarker to differentiate BD from MDD should be further addressed in future studies using longitudinal designs.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , White Matter , Humans , Bipolar Disorder/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Diffusion Tensor Imaging/methods , Anisotropy , Cross-Sectional Studies , White Matter/diagnostic imaging , Mania
19.
Psychol Med ; 53(10): 4720-4731, 2023 07.
Article in English | MEDLINE | ID: mdl-35754405

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) represents a potent risk factor for major depressive disorder (MDD), including poorer treatment response. Altered resting-state connectivity in the fronto-limbic system has been reported in maltreated individuals. However, previous results in smaller samples differ largely regarding localization and direction of effects. METHODS: We included healthy and depressed samples [n = 624 participants with MDD; n = 701 healthy control (HC) participants] that underwent resting-state functional MRI measurements and provided retrospective self-reports of maltreatment using the Childhood Trauma Questionnaire. A-priori defined regions of interest [ROI; amygdala, hippocampus, anterior cingulate cortex (ACC)] were used to calculate seed-to-voxel connectivities. RESULTS: No significant associations between maltreatment and resting-state connectivity of any ROI were found across MDD and HC participants and no interaction effect with diagnosis became significant. Investigating MDD patients only yielded maltreatment-associated increased connectivity between the amygdala and dorsolateral frontal areas [pFDR < 0.001; η2partial = 0.050; 95%-CI (0.023-0.085)]. This effect was robust across various sensitivity analyses and was associated with concurrent and previous symptom severity. Particularly strong amygdala-frontal associations with maltreatment were observed in acutely depressed individuals [n = 264; pFDR < 0.001; η2partial = 0.091; 95%-CI (0.038-0.166)). Weaker evidence - not surviving correction for multiple ROI analyses - was found for altered supracallosal ACC connectivity in HC individuals associated with maltreatment. CONCLUSIONS: The majority of previous resting-state connectivity correlates of CM could not be replicated in this large-scale study. The strongest evidence was found for clinically relevant maltreatment associations with altered adult amygdala-dorsolateral frontal connectivity in depression. Future studies should explore the relevance of this pathway for a maltreated subgroup of MDD patients.


Subject(s)
Child Abuse , Depressive Disorder, Major , Humans , Adult , Child , Depressive Disorder, Major/diagnostic imaging , Depression , Retrospective Studies , Limbic System , Magnetic Resonance Imaging/methods
20.
Biol Psychiatry ; 93(2): 178-186, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36114041

ABSTRACT

BACKGROUND: Altered brain structural connectivity has been implicated in the pathophysiology of psychiatric disorders including schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). However, it is unknown which part of these connectivity abnormalities are disorder specific and which are shared across the spectrum of psychotic and affective disorders. We investigated common and distinct brain connectivity alterations in a large sample (N = 1743) of patients with SZ, BD, or MDD and healthy control (HC) subjects. METHODS: This study examined diffusion-weighted imaging-based structural connectome topology in 720 patients with MDD, 112 patients with BD, 69 patients with SZ, and 842 HC subjects (mean age of all subjects: 35.7 years). Graph theory-based network analysis was used to investigate connectome organization. Machine learning algorithms were trained to classify groups based on their structural connectivity matrices. RESULTS: Groups differed significantly in the network metrics global efficiency, clustering, present edges, and global connectivity strength with a converging pattern of alterations between diagnoses (e.g., efficiency: HC > MDD > BD > SZ, false discovery rate-corrected p = .028). Subnetwork analysis revealed a common core of edges that were affected across all 3 disorders, but also revealed differences between disorders. Machine learning algorithms could not discriminate between disorders but could discriminate each diagnosis from HC. Furthermore, dysconnectivity patterns were found most pronounced in patients with an early disease onset irrespective of diagnosis. CONCLUSIONS: We found shared and specific signatures of structural white matter dysconnectivity in SZ, BD, and MDD, leading to commonly reduced network efficiency. These results showed a compromised brain communication across a spectrum of major psychiatric disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Psychotic Disorders , Humans , Adult , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Psychotic Disorders/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...