Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 10(11): 4762-4772, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551059

ABSTRACT

Plant-animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant-animal interactions where they are the predator. Competition with animals is a potential antagonistic plant-animal interaction unique to carnivorous plants when they and animal predators consume the same prey.The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet-web spiders, and ground-running spiders co-exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet-web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity-density. Ground-running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.Sundews and spiders consumed springtails. Springtail activity-densities were lower, the higher the density of sundews. Both sheet-web and ground-running spiders were found less often where sundew densities were high. Sheet-web size was smaller where sundew densities were high.The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.

2.
Hum Genet ; 136(9): 1079-1091, 2017 09.
Article in English | MEDLINE | ID: mdl-28664341

ABSTRACT

The central nervous system-specific serotonin receptor 2C (5HT2C) controls key physiological functions, such as food intake, anxiety, and motoneuron activity. Its deregulation is involved in depression, suicidal behavior, and spasticity, making it the target for antipsychotic drugs, appetite controlling substances, and possibly anti-spasm agents. Through alternative pre-mRNA splicing and RNA editing, the 5HT2C gene generates at least 33 mRNA isoforms encoding 25 proteins. The 5HT2C is a G-protein coupled receptor that signals through phospholipase C, influencing the expression of immediate/early genes like c-fos. Most 5HT2C isoforms show constitutive activity, i.e., signal without ligand binding. The constitutive activity of 5HT2C is decreased by pre-mRNA editing as well as alternative pre-mRNA splicing, which generates a truncated isoform that switches off 5HT2C receptor activity through heterodimerization; showing that RNA processing regulates the constitutive activity of the 5HT2C system. RNA processing events influencing the constitutive activity target exon Vb that forms a stable double stranded RNA structure with its downstream intron. This structure can be targeted by small molecules and oligonucleotides that change exon Vb alternative splicing and influence 5HT2C signaling in mouse models, leading to a reduction in food intake. Thus, the 5HT2C system is a candidate for RNA therapy in multiple models of CNS disorders.


Subject(s)
Alternative Splicing , Exons , Protein Multimerization , RNA Precursors , Receptors, Serotonin , Animals , Central Nervous System Diseases/genetics , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/therapy , Humans , Mice , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Receptors, Serotonin/biosynthesis , Receptors, Serotonin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...