Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Mol Metab ; : 102033, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304061

ABSTRACT

With age, metabolic perturbations accumulate to elevate our obesity burden. While age-onset obesity is mostly driven by a sedentary lifestyle and high calorie intake, genetic and epigenetic factors also play a role. Among these, members of the large histone deacetylase (HDAC) family are of particular importance as key metabolic determinants for healthy ageing, or metabolic dysfunction. Here, we aimed to interrogate the role of class 2 family member HDAC5 in controlling systemic metabolism and age-related obesity under non-obesogenic conditions. Starting at 6 months of age, we observed adult-onset obesity in chow-fed male global HDAC5-KO mice, that was accompanied by marked reductions in adrenergic-stimulated ATP-consuming futile cycles, including BAT activity and UCP1 levels, WAT-lipolysis, skeletal muscle, WAT and liver futile creatine and calcium cycles, and ultimately energy expenditure. Female mice did not differ between genotypes. The lower peripheral sympathetic nervous system (SNS) activity in mature male KO mice was linked to higher dopaminergic neuronal activity within the dorsomedial arcuate nucleus (dmARC) and elevated hypothalamic dopamine levels. Mechanistically, we reveal that hypothalamic HDAC5 acts as co-repressor of STAT5b over the control of Tyrosine hydroxylase (TH) gene transactivation, which ultimately orchestrates the activity of dmARH dopaminergic neurons and energy metabolism in male mice under non-obesogenic conditions.

2.
Diabetes Obes Metab ; 26(10): 4562-4570, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39118203

ABSTRACT

AIM: To assess oxytocin's acute glucoregulatory impact in men with type 2 diabetes in the context of our previous findings that oxytocin improves ß-cell responsivity in healthy men. METHODS: In a double-blind, crossover comparison, intranasal oxytocin (24 IU) and placebo, respectively, were administered to 25 fasted men with non-insulin-treated type 2 diabetes (age ± standard error of the mean, 63.40 ± 1.36 years; body mass index, 27.77 ± 0.66 kg/m2; HbA1c, 6.86% ± 0.08%; Homeostatic Model Assessment of Insulin Resistance (HOMA-IR, 3.44 ± 0.39) 60 minutes before an oral glucose tolerance test (oGTT). Key outcomes were compared with previous results in men with normal weight or obesity. RESULTS: Oxytocin compared with placebo increased plasma oxytocin concentrations and reduced the heart rate, but did not alter glucose metabolism in the 3 hours after oGTT onset (area under the curve, glucose, 2240 ± 80.5 vs. 2190 ± 69.5 mmol/L × min; insulin, 45 663 ± 4538 vs. 44 343 ± 4269 pmol/L × min; C-peptide, 235 ± 5.1 vs. 231 ± 15.9 nmol/L × min). CONCLUSIONS: This outcome contrasts with the oxytocin-induced attenuation of early postprandial glucose excursions in normal-weight individuals, but is in line with the absence of respective effects in men with obesity. We conclude that insulin resistance in type 2 diabetes is associated with decreased sensitivity to the acute glucoregulatory effect of oxytocin in male individuals.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Glucose Tolerance Test , Insulin Resistance , Oxytocin , Humans , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Oxytocin/administration & dosage , Oxytocin/blood , Middle Aged , Double-Blind Method , Blood Glucose/drug effects , Blood Glucose/metabolism , Insulin/blood , Administration, Intranasal , Glucose Intolerance/drug therapy , Glucose Intolerance/blood , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/drug effects
3.
Article in English | MEDLINE | ID: mdl-38821753

ABSTRACT

The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.

4.
Nat Metab ; 6(3): 448-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418586

ABSTRACT

Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive ß cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes ß cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although ß cell-specific loss of inceptor improves ß cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic ß cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the ß cells, improves glucose homeostasis by enhancing ß cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Male , Animals , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Obesity/genetics , Obesity/metabolism , Diet , Insulin/metabolism , Homeostasis , Neurons/metabolism
5.
Cell Rep ; 42(10): 113305, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864798

ABSTRACT

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Mice , Animals , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Analgesics, Opioid/pharmacology , Neurons/metabolism , Satiation , Cholecystokinin/metabolism
6.
Nature ; 615(7953): 705-711, 2023 03.
Article in English | MEDLINE | ID: mdl-36922598

ABSTRACT

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Subject(s)
Sucrose , Sweetening Agents , T-Lymphocytes , Animals , Mice , Sucrose/analogs & derivatives , Sweetening Agents/administration & dosage , Sweetening Agents/adverse effects , Sweetening Agents/pharmacology , Sweetening Agents/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Food Safety , Calcium Signaling/drug effects , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Bacterial Infections/immunology , Neoplasms/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
7.
Cell Metab ; 35(3): 438-455.e7, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36889283

ABSTRACT

Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.


Subject(s)
Arcuate Nucleus of Hypothalamus , Leptin , Mice , Animals , Female , Leptin/metabolism , Estradiol/pharmacology , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Obesity/metabolism
8.
Cell Metab ; 35(5): 821-836.e7, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36948185

ABSTRACT

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic ß cells based on histone mark heterogeneity (ßHI and ßLO). ßHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. ßHI and ßLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, ßHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates ßHI/ßLO ratio in vivo, suggesting that control of ß cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with ßHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct ß cell subtypes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/metabolism , Histones/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Epigenesis, Genetic , Insulin Secretion
9.
Nat Commun ; 14(1): 1066, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828816

ABSTRACT

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Subject(s)
Neuralgia , Oxytocin , Rats , Male , Female , Animals , Oxytocin/metabolism , Periaqueductal Gray/physiology , Neurons/metabolism , Analgesics/pharmacology , Neuralgia/metabolism
10.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Article in English | MEDLINE | ID: mdl-36458331

ABSTRACT

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Subject(s)
Astrocytes , Hypothalamus , Neuropeptides , Oxytocin , Prader-Willi Syndrome , Animals , Female , Male , Mice , Astrocytes/metabolism , Disease Models, Animal , Hypothalamus/metabolism , Neuropeptides/metabolism , Oxytocin/metabolism , Prader-Willi Syndrome/metabolism , Receptors, Oxytocin/metabolism
11.
Glia ; 70(11): 2062-2078, 2022 11.
Article in English | MEDLINE | ID: mdl-35802021

ABSTRACT

Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.


Subject(s)
Astrocytes , Proteomics , Arcuate Nucleus of Hypothalamus/metabolism , Astrocytes/metabolism , Diet, High-Fat/adverse effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Hypothalamus/metabolism
12.
Nat Metab ; 4(5): 505-506, 2022 05.
Article in English | MEDLINE | ID: mdl-35501600

Subject(s)
Astrocytes , Synapses
13.
Cell Metab ; 33(6): 1155-1170.e10, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33951475

ABSTRACT

Pathologies of the micro- and macrovascular systems are a hallmark of the metabolic syndrome, which can lead to chronically elevated blood pressure. However, the underlying pathomechanisms involved still need to be clarified. Here, we report that an obesity-associated increase in serum leptin triggers the select expansion of the micro-angioarchitecture in pre-autonomic brain centers that regulate hemodynamic homeostasis. By using a series of cell- and region-specific loss- and gain-of-function models, we show that this pathophysiological process depends on hypothalamic astroglial hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling downstream of leptin signaling. Importantly, several distinct models of HIF1α-VEGF pathway disruption in astrocytes are protected not only from obesity-induced hypothalamic angiopathy but also from sympathetic hyperactivity or arterial hypertension. These results suggest that hyperleptinemia promotes obesity-induced hypertension via a HIF1α-VEGF signaling cascade in hypothalamic astrocytes while establishing a novel mechanistic link that connects hypothalamic micro-angioarchitecture with control over systemic blood pressure.


Subject(s)
Astrocytes/metabolism , Hypertension/metabolism , Hypothalamus/metabolism , Leptin/physiology , Obesity/metabolism , Animals , Astrocytes/pathology , Female , Hypothalamus/pathology , Male , Mice , Mice, Inbred C57BL
15.
J Neuroendocrinol ; 33(4): e12953, 2021 04.
Article in English | MEDLINE | ID: mdl-33724579

ABSTRACT

Astrocytes are specialised glial cells that integrate distinct inputs arising from neurones, other glial cells and the microcirculation to regulate diverse aspects of brain function. A growing body of emerging evidence supports that astrocytes, similar to neurones, also play active roles in the neuroendocrine control of metabolism by responding to afferent nutritional and hormonal cues and translating these metabolic cues into neuronal inputs. Specifically, insulin action in astrocytes has received special emphasis given its newly discovered regulatory role in brain glucose uptake, which until recently was assumed to be an insulin independent process. We now know that insulin signalling in astrocytes regulates metabolic processes and behavioural responses through coupling brain glucose uptake with nutrient availability to maintain energy balance and systemic glucose homeostasis. Moreover, genetic ablation of the insulin receptor in astrocytes is associated with anxiety- and depressive-like behaviours, confirming that these glial cells are involved in the regulation of cognition and mood via insulin action. Here, we provide a comprehensive review of the most relevant findings that have been made over the course of the last few years linking insulin signalling in astrocytes with the pathogenesis of brain metabolic and neurodegenerative diseases; a still unexplored field, but with a high translational potential for developing therapies.


Subject(s)
Astrocytes/metabolism , Eating/physiology , Energy Metabolism/physiology , Glucose/metabolism , Insulin/metabolism , Signal Transduction/physiology , Animals , Homeostasis/physiology , Humans , Neurons/metabolism
16.
Nature ; 592(7854): 444-449, 2021 04.
Article in English | MEDLINE | ID: mdl-33762736

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Liver/immunology , Liver/pathology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Receptors, CXCR6/immunology , Acetates/pharmacology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/pathology , Cell Death/drug effects , Cell Death/immunology , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Interleukin-15/immunology , Interleukin-15/pharmacology , Liver/drug effects , Male , Mice , Mice, Inbred C57BL
17.
Mol Metab ; 45: 101147, 2021 03.
Article in English | MEDLINE | ID: mdl-33359386

ABSTRACT

OBJECTIVE: Reorganization of the extracellular matrix is a prerequisite for healthy adipose tissue expansion, whereas fibrosis is a key feature of adipose dysfunction and inflammation. However, very little is known about the direct effects of impaired cell-matrix interaction in adipocyte function and insulin sensitivity. The objective of this study was to determine whether integrin activity can regulate insulin sensitivity in adipocytes and thereby systemic metabolism. METHODS: We characterized integrin activity in adipose tissue and its consequences on whole-body metabolism using adipose-selective deletion of ß1 integrin (Itgb1adipo-cre) and Kindlin-2 (Kind2adipo-cre) in mice. RESULTS: We demonstrate that integrin signaling regulates white adipocyte insulin action and systemic metabolism. Consequently, loss of adipose integrin activity, similar to loss of adipose insulin receptors, results in a lipodystrophy-like phenotype and systemic insulin resistance. However, brown adipose tissue of Kind2adipo-cre and Itgb1adipo-cre mice is chronically hyperactivated and has increased substrate delivery, reduced endothelial basement membrane thickness, and increased endothelial vesicular transport. CONCLUSIONS: Thus, we establish integrin-extracellular matrix interactions as key regulators of white and brown adipose tissue function and whole-body metabolism.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Insulin Resistance , Integrins/metabolism , Adipocytes, White/metabolism , Animals , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Diet , Diet, High-Fat , Energy Metabolism/drug effects , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Lipodystrophy/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , Obesity/genetics , Obesity/metabolism , Signal Transduction , Thermogenesis/genetics
18.
Nat Metab ; 1(2): 222-235, 2019 02.
Article in English | MEDLINE | ID: mdl-32694784

ABSTRACT

Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.


Subject(s)
Hypothalamus/metabolism , Melanocortins/metabolism , Neurons/metabolism , T-Box Domain Proteins/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Body Weight , Energy Metabolism , Gene Expression Profiling , Green Fluorescent Proteins/genetics , Hypothalamus/cytology , Mice , Mice, Inbred C57BL , Pro-Opiomelanocortin/genetics , RNA, Messenger/genetics , T-Box Domain Proteins/genetics
19.
Nat Commun ; 9(1): 4975, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459311

ABSTRACT

In the original PDF version of this article, affiliation 1, 'Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Muenchen & German Center for Diabetes Research (DZD), Neuherberg, Germany', was incorrectly given as 'Institute of Diabetes and Regeneration Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany '. This has now been corrected in the PDF version of the article; the HTML version was correct at the time of publication.

20.
Nat Commun ; 9(1): 4304, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353008

ABSTRACT

Pharmacological stimulation of brown adipose tissue (BAT) thermogenesis to increase energy expenditure is progressively being pursued as a viable anti-obesity strategy. Here, we report that pharmacological activation of the cold receptor transient receptor potential cation channel subfamily M member 8 (TRPM8) with agonist icilin mimics the metabolic benefits of cold exposure. In diet-induced obese (DIO) mice, treatment with icilin enhances energy expenditure, and decreases body weight, without affecting food intake. To further potentiate the thermogenic action profile of icilin and add complementary anorexigenic mechanisms, we set out to identify pharmacological partners next to icilin. To that end, we specifically targeted nicotinic acetylcholine receptor (nAChR) subtype alpha3beta4 (α3ß4), which we had recognized as a potential regulator of energy homeostasis and glucose metabolism. Combinatorial targeting of TRPM8 and nAChR α3ß4 by icilin and dimethylphenylpiperazinium (DMPP) orchestrates synergistic anorexic and thermogenic pathways to reverse diet-induced obesity, dyslipidemia, and glucose intolerance in DIO mice.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Receptors, Nicotinic/metabolism , TRPM Cation Channels/antagonists & inhibitors , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Body Weight/drug effects , Cold Temperature , Diabetes Mellitus, Type 2/drug therapy , Diet , Dimethylphenylpiperazinium Iodide/pharmacology , Dimethylphenylpiperazinium Iodide/therapeutic use , Energy Metabolism/drug effects , Fatty Liver/pathology , Glucose Intolerance/pathology , Insulin Resistance , Male , Melanocortins/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Receptor, Melanocortin, Type 4/metabolism , TRPM Cation Channels/metabolism , Thermogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL