Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Pharm Biomed Anal ; 247: 116258, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830272

ABSTRACT

Film-coated modified-release tablets are an important dosage form amenable to targeted, controlled, or delayed drug release in the specific region of the gastrointestinal (GI) tract. Depending on the film composition and interaction with the GI fluid, such coated products can modulate the local bioavailability, systemic absorption, protection as an enteric barrier, etc. Although the interaction of a dosage form with the surrounding dissolution medium is vital for the resulting release behavior, the underlying physicochemical phenomena at the film and core levels occurring during the drug release process have not yet been well described. In this work, we attempted to tackle this limitation by introducing a novel in vitro test based on optical coherence tomography (OCT) that allows an in-situ investigation of the sub-surface processes occurring during the drug release. Using a commercially available tablet based on osmotic-controlled release oral delivery systems (OROS), we demonstrated the performance of the presented prototype in terms of monitoring the membrane thickness and thickness variability, the surface roughness, the core swelling behavior, and the porosity of the core matrix throughout the in vitro drug release process from OROS. The superior spatial (micron scale) and temporal (less than 10 ms between the subsequent tomograms) resolution achieved in the proposed setup provides an improved understanding of the dynamics inside the microstructure at any given time during the dissolution procedure with the previously unattainable resolution, offering new opportunities for the design and testing of patient-centric dosage forms.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Tablets , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Solubility , Administration, Oral , Porosity , Tablets, Enteric-Coated/chemistry
2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38543161

ABSTRACT

In this paper, we present the identification of polymorphisms at an early stage, identified by applying non-standard methods such as SAXS. We provide an analytical approach to polymorphism in the quality/purity of an active pharmaceutical ingredient (API), supplied to a generic company by two different suppliers (i.e., manufacturers). Changes in thermodynamic polymorphism firstly become visible in traces in the larger crystal lattices, which are visible on the SAXS spectrum only using the logarithmic scale, as shown in the result figures. Hence, we are here on the trail of the beginning of a new polymorph in nicomorphine, whose crystal waviness at the early stage is visible only in the additional symmetrical peaks identified and calculated using SAXS, while the chemical analyses excluded all kinds of chemical impurities. The chemical and structural properties were studied using the following techniques: SAXS, WAXS, DSC, dissolution, Raman spectroscopy, and FTIR. Only the SAXS technique could identify crucial differences and calculate the additional signals related to giant crystals, whilst a standard method such as WAXS showed none, and nor did the chemical analyses, such as Raman spectroscopy and FT-IR. This means that due to water in crystallization (known in nicomorphine) or thermodynamic waviness, the formation of the new polymorph starts first in traces, which become visible at larger distances from the crystal lattice, detectible only in the SAXS range. This is a very important premise and hypothesis for further research, and we believe that this work lays a new stone in understanding the origin of new unknown polymorphs and their mixtures. Therefore, the aim of this work is to show that the use of non-standard methods (i.e., SAXS) can be of great benefit to API analysis and the identification of polymorphic changes in the early phase, which can cause varied stability, solubility and bioavailability and thus different therapeutic effects or side effects.

3.
React Chem Eng ; 9(3): 713-727, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38433980

ABSTRACT

Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis. First, caprolactone is produced in batch from cyclohexanol using a coenzymatic cascade involving an alcohol dehydrogenase (ADH) and BVMO. Different process parameters and aeration modes were explored to optimize the cascade's productivity. Secondly, the continuous extraction of caprolactone into an organic solvent, needed for the polymerization step, was optimized. 3D-printed mixers were applied to enhance the mass transfer between the organic and the aqueous phases. Lastly, we investigated the ring-opening polymerization of caprolactone to PCL catalyzed by Candida antarctica lipase B (CAL-B), with a focus on eco-friendly solvents like cyclopentyl-methyl-ether (CPME). Space-time-yields up to 58.5 g L-1 h-1 were achieved with our overall setup. By optimizing the individual process steps, we present an efficient and sustainable pathway for PCL production.

4.
Int J Pharm ; 632: 122577, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36596318

ABSTRACT

The surface of particles is the hotspot of interaction with their environment and is therefore a major target for particle engineering. Particles with tailored coatings are greatly desired for a range of different applications. Amorphous coatings applied via film coating or microencapsulation have frequently been described in the pharmaceutical context and usually result in homogeneous surfaces. In the present study we have been exploring the feasibility of coating core particles with crystalline substances, a matter that has rarely been investigated. The expansion of the range of possible coating materials to include small organic molecules enables completely new product properties to be achieved. We present an approach based on temperature cycles performed in a tubular crystallizer to result in engineered crystalline coatings on excipient core particles. By manipulating the process settings and by the choice of coating substance we are able to tailor surface roughness, topography as well as surface chemistry. Benefits of our approach are demonstrated by using resulting particles as carriers in dry-powder-inhaler formulations. Depending on the resulting surface chemistry and surface roughness, coated carrier particles show varying fitness for delivering the model API salbutamol sulphate to the lung.


Subject(s)
Albuterol , Drug Carriers , Drug Carriers/chemistry , Temperature , Particle Size , Powders/chemistry , Administration, Inhalation , Albuterol/chemistry , Dry Powder Inhalers/methods , Excipients/chemistry , Surface Properties
5.
ChemSusChem ; 15(22): e202201468, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36069133

ABSTRACT

Photo- and biocatalysis show many advantages as more sustainable solutions for the production of fine chemicals. In an effort to combine the benefits and the knowledge of both these areas, a continuous photobiocatalytic setup was designed and optimized to carry out whole-cell biotransformations within cells of the cyanobacterium Synechocystis sp. PCC 6803 expressing the gene of the ene-reductase YqjM from B. subtilis. The effect of the light intensity and flow rate on the specific activity in the stereoselective reduction of 2-methyl maleimide was investigated via a design-of-experiments approach. The cell density in the setup was further increased at the optimal operating conditions without loss in specific activity, demonstrating that the higher surface area/volume ratio in the coil reactor improved the illumination efficiency of the process. Furthermore, different reactor designs were compared, proving that the presented approach was the most cost- and time-effective solution for intensifying photobiotransformations within cyanobacterial cells.


Subject(s)
Synechocystis , Synechocystis/genetics , Light , Biotransformation , Oxidoreductases/metabolism , Biocatalysis , Photosynthesis
6.
J Flow Chem ; 11(3): 675-689, 2021.
Article in English | MEDLINE | ID: mdl-34745652

ABSTRACT

In recent years, 3D printing has emerged in the field of chemical engineering as a powerful manufacturing technique to rapidly design and produce tailor-made reaction equipment. In fact, reactors with complex internal geometries can be easily fabricated, optimized and interchanged in order to respond to precise process needs, such as improved mixing and increased surface area. These advantages make them interesting especially for catalytic applications, since customized structured bed reactors can be easily produced. 3D printing applications are not limited to reactor design, it is also possible to realize functional low cost alternatives to analytical equipment that can be used to increase the level of process understanding while keeping the investment costs low. In this work, in-house designed ceramic structured inserts printed via vat photopolymerization (VPP) are presented and characterized. The flow behavior inside these inserts was determined with residence time distribution (RTD) experiments enabled by in-house designed and 3D printed inline photometric flow cells. As a proof of concept, these structured inserts were fitted in an HPLC column to serve as solid inorganic supports for the immobilization of the enzyme Phenolic acid Decarboxylase (bsPAD), which catalyzes the decarboxylation of cinnamic acids. The conversion of coumaric acid to vinylphenol was chosen as a model system to prove the implementation of these engineered inserts in a continuous biocatalytic application with high product yield and process stability. The setup was further automated in order to quickly identify the optimum operating conditions via a Design of Experiments (DoE) approach. The use of a systematic optimization, together with the adaptability of 3D printed equipment to the process requirements, render the presented approach highly promising for a more feasible implementation of biocatalysts in continuous industrial processes. Graphical abstract. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s41981-021-00163-4.

7.
Org Process Res Dev ; 22(2): 178-189, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29910596

ABSTRACT

A continuous tandem in-line evaporation-crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.

8.
Beilstein J Org Chem ; 14: 648-658, 2018.
Article in English | MEDLINE | ID: mdl-29623127

ABSTRACT

Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce0.99-x Sn x Pd0.01O2-δ (x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

9.
Cryst Growth Des ; 18(8): 4403-4415, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30918477

ABSTRACT

Besides size and polymorphic form, crystal shape takes a central role in engineering advanced solid materials for the pharmaceutical and chemical industries. This work demonstrates how multiple cycles of growth and dissolution can manipulate the habit of an acetylsalicylic acid crystal population. Considerable changes of the crystal habit could be achieved within minutes due to rapid cycling, i.e., up to 25 cycles within <10 min. The required fast heating and cooling rates were facilitated using a tubular reactor design allowing for superior temperature control. The face-specific interactions between solvent and the crystals' surface result in face-specific growth and dissolution rates and hence alterations of the final shape of the crystals in solution. Accurate quantification of the crystal shapes was essential for this work, but is everything except simple. A commercial size and shape analyzer had to be adapted to achieve the required accuracy. Online size, and most important shape, analysis was achieved using an automated microscope equipped with a flow-through cell, in combination with a dedicated image analysis routine for particle tracking and shape analysis. Due to the implementation of this analyzer, capable of obtaining statistics on the crystals' shape while still in solution (no sampling and manipulation required), the dynamic behavior of the size shape distribution could be studied. This enabled a detailed analysis of the solvent's effect on the change in crystal habit.

10.
Mol Pharm ; 14(12): 4560-4571, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29058913

ABSTRACT

Understanding properties and mechanisms that govern drug degradation in the solid state is of high importance to ensure drug stability and safety of solid dosage forms. In this study, we attempt to understand drug-excipient interactions in the solid state using both theoretical and experimental approaches. The model active pharmaceutical ingredients (APIs) under study are carvedilol (CAR) and codeine phosphate (COP), which are known to undergo esterification with citric acid (CA) in the solid state. Starting from the crystal structures of two different polymorphs of each compound, we calculated the exposure and accessibility of reactive hydroxyl groups for a number of relevant crystal surfaces, as well as descriptors that could be associated with surface stabilities using molecular simulations. Accelerated degradation experiments at elevated temperature and controlled humidity were conducted to assess the propensity of different solid forms of the model APIs to undergo chemical reactions with anhydrous CA or CA monohydrate. In addition, for CAR, we studied the solid state degradation at varying humidity levels and also under mechano-activation. Regarding the relative degradation propensities, we found that variations in the exposure and accessibility of molecules on the crystal surface play a minor role compared to the impact of molecular mobility due to different levels of moisture. We further studied drug-excipient interactions under mechano-activation (comilling of API and CA) and found that the reaction proceeded even faster than in physical powder mixtures kept at accelerated storage conditions.


Subject(s)
Carbazoles/chemistry , Citric Acid/chemistry , Codeine/chemistry , Excipients/chemistry , Propanolamines/chemistry , Carvedilol , Crystallization , Drug Stability , Esterification , Humidity , Powders/chemistry , Temperature , Water/chemistry
11.
Dalton Trans ; 41(41): 12711-9, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22968920

ABSTRACT

Four tethered titanocene complexes were covalently immobilized onto 3-mercaptopropyl-functionalized silica gel. We have investigated the influence of the length of the tether and of the ansa-bridge on the activity in the heterogeneous hydrosilylation of the cyclic imine 2-phenylpyrroline, taken as an illustrative example. Possible metal leaching during the reaction was investigated using ICP/OES, recycling studies and the three-phase test. The novel immobilized catalysts exhibit an activity similar to their homogeneous analogues in the tested hydrosilylation reactions with a TOF of ~20 h(-1). Furthermore, our results indicate that metal leaching is negligible under the applied reaction conditions.

12.
Chem Commun (Camb) ; (11): 1329-31, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18389123

ABSTRACT

A tethered ethylenebis(indenyl) zirconocene was covalently immobilized on H-terminated Si(111) surfaces using UV-mediated alkene hydrosilylation, thus making possible the development of structured catalytic surfaces with highly controlled properties.

13.
Langmuir ; 24(24): 13957-61, 2008 Dec 16.
Article in English | MEDLINE | ID: mdl-19360936

ABSTRACT

A versatile two-step method has been developed that allows linking of biomolecules covalently to hydrogen-terminated group-IV semiconductors by means of epoxy-alkenes. First, the terminal C==C double bond of the alkene forms a covalent bond with the silicon, germanium, or diamond surface by UV-mediated hydrosilylation. The terminal oxirane moiety then reacts with the biomolecule. As a model system, we investigated the attachment of an esterase B to a Si(111) surface by means of the linker molecule 1,2-epoxy-9-decene. Samples were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The immobilized enzyme retained its activity and exhibited good long-term stability.


Subject(s)
Epoxy Compounds/chemistry , Esterases/chemistry , Esterases/metabolism , Silicon/chemistry , Models, Molecular , Semiconductors , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...