Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(19): 8707-8716, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35522997

ABSTRACT

Controlling the electronic spin state in single molecules through an external stimulus is of interest in developing devices for information technology, such as data storage and quantum computing. We report the synthesis and operation mode of two all-organic molecular spin-state switches that can be photochemically switched from a diamagnetic [electron paramagnetic resonance (EPR)-silent] to a paramagnetic (EPR-active) form at cryogenic temperatures due to a reversible electrocyclic reaction of its carbon skeleton. Facile synthetic substitution of a configurationally stable 1,14-dimethyl-[5]helicene with radical stabilizing groups at the 4,11-positions afforded two spin-state switches as 4,11-dioxo or 4,11-bis(dicyanomethylidenyl) derivatives in a closed diamagnetic form. After irradiation with an LED light source at cryogenic temperatures, a stable paramagnetic state is readily obtained, making this system a bistable magnetic switch that can reversibly react back to its diamagnetic form through a thermal stimulus. The switching can be monitored with UV/vis spectroscopy and EPR spectroscopy or induced by electrochemical reduction and reoxidation. Variable-temperature EPR spectroscopy of the paramagnetic species revealed an open-shell triplet ground state with an experimentally determined triplet-singlet energy gap of ΔET-S < 0.1 kcal mol-1. The inherent chirality and the ability to separate the enantiomers turns this helical motif into a potential chiroptical spin-state switch. The herein developed 4,11-substitution pattern on the dimethyl[5]helicene introduces a platform for designing future generations of organic molecular photomagnetic switches that might find applications in spintronics and related fields.

2.
J Phys Chem A ; 125(17): 3681-3688, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33885299

ABSTRACT

Photoswitchable diarylethenes provide a unique opportunity to optically modulate frontier molecular orbital energy levels, thereby opening an avenue for the design of electronic devices such as photocontrollable organic field-effect transistors (OFETs). In the present work, the absolute position of the frontier orbital levels of nonsymmetrical diarylethenes based on a cyclopentenone bridge has been studied using cyclic voltammetry and density functional theory (DFT) calculations. It has been shown that varying heteroaromatic substituents make it possible to change the absolute positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of both diarylethene photoisomers. The data obtained are used to refine the operation mechanism of the previously developed OFET devices, employing the cyclopentenone-derived diarylethenes at the dielectric/semiconductor interface.

3.
Beilstein J Org Chem ; 14: 2812-2821, 2018.
Article in English | MEDLINE | ID: mdl-30498531

ABSTRACT

The electrochemical behavior of stiff dithienylethenes, undergoing double bond isomerization in addition to ring-closure, has been investigated. Electrochromism was observed in almost all cases, with the major pathway being the oxidatively induced cyclization of the open isomers. The influence of the ring size (to lock the reactive antiparallel conformation) as well as substituents (to modulate the redox potential) on the electrocyclization was examined. In the series of derivatives with 6-membered rings, both the E- and the Z-isomer convert to the closed isomer, whereas for the 7-membered rings no cyclization from the E-isomer was observed. For both stiff and normal dithienylethenes bearing benzonitrile substituents an additional and rare reductive electrocyclization was observed. The mechanism underlying both observed electrocyclization pathways has been elucidated.

4.
Chemistry ; 24(20): 5341-5349, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29265510

ABSTRACT

Two novel bis(triazolyl)carbazole ligands Hbtc1 (3,6-di(tert-butyl)-1,8-bis[(1-(3,5-di(tert-butyl)phenyl)-1,2,3-triazol-4-yl)]-9H-carbazole) and Hbtc2 (3,6-di(tert-butyl)-1,8-bis[(4-(3,5-di(tert-butyl)phenyl)-1,2,3-triazol-1-yl)]-9H-carbazole), differing in the regiochemistry of triazole attachment, have been synthesized by Cu-catalyzed azide-alkyne cycloaddition, the so-called "click-reactions". Metalation with Ru, Zn, and Ni precursors led to the formation of M(btc)2 complexes (M=Ru, Zn, Ni), with two deprotonated ligands coordinating to the metal center in tridentate fashion, forming almost perfectly octahedral coordination spheres. The redox properties of M(btc)2 complexes have been investigated by cyclic voltammetry, UV/Vis spectroscopy, spectroelectrochemistry, and chemically. The CV of the ruthenium complexes revealed three quasi-reversible one-electron oxidation processes, one assigned as the RuII/III couple and two originating from ligand-based oxidations. The CVs of both Zn and Ni complexes contained only two oxidation waves corresponding to the oxidation of the two ligands. The oxidation potentials of complexes derived from Hbtc1 ligands were found to be 300-400 mV lower than those of the corresponding complexes derived from Hbtc2, reflecting the significant difference in donation through the N(2) or N(3) atom of the triazole moiety.

5.
Chem Asian J ; 12(24): 3156-3161, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29083098

ABSTRACT

A series of 3,6-bis(4-triazolyl)pyridazines equipped with terminal phenyl substituents with varying degree of fluorination were synthesized by using the facile copper-catalyzed azide-alkyne cycloaddition and their structures were thoroughly investigated in the gas phase, in solution, and in the solid state by employing DFT calculations, NMR spectroscopy, and single-crystal X-ray diffraction, respectively. On the molecular level, their structure is governed by the strong preference of the triazole-pyridazine linkages for the anti-conformation. The supramolecular organization of the molecules in the crystalline solid is controlled by π-stacking, C-H⋅⋅⋅π as well as C-F⋅⋅⋅H interactions. The latter can conveniently be tuned by the number and position of fluorine substituents in the terminal phenyl units, giving rise to either herringbone-like, 1D or 2D lamellar packing. Electrochemistry and optical spectroscopy of all compounds suggest that they might find use as electron-transporting/hole-blocking materials in organic electronics.

6.
Chemistry ; 23(56): 14090-14095, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28881057

ABSTRACT

To improve the sensitized Z→E photoisomerization of azobenzenes, and circumvent the threshold concentration necessary for the bimolecular photoinduced electron transfer reaction to generate the rapidly isomerizing Z-azobenzene radical anion, an IrIII complex with a covalently tethered azobenzene fragment was synthesized. Selective irradiation of the 1 MLCT band of the IrIII complex induced an efficiently sensitized photoswitching of the dyad over a wide concentration range and even at high dilution.

8.
Chem Commun (Camb) ; 53(23): 3323-3326, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28210737

ABSTRACT

Azobenzene multi-state switches whose isomerization can be orthogonally induced with photons and electrons are presented. Exposure to green, blue, or ultraviolet light allows toggling between three isomers, while the fourth one is formed selectively via electrocatalytic isomerization.

9.
Chemistry ; 23(15): 3743-3754, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28093831

ABSTRACT

Among bistable photochromic molecules, diarylethenes (DAEs) possess the distinct feature that upon photoisomerization they undergo a large modulation of their π-electronic system, accompanied by a marked shift of the HOMO/LUMO energies and hence oxidation/reduction potentials. The electronic modulation can be utilized to remote-control charge- as well as energy-transfer processes and it can be transduced to functional entities adjacent to the DAE core, thereby regulating their properties. In order to exploit such photoswitchable systems it is important to precisely adjust the absolute position of their HOMO and LUMO levels and to maximize the extent of the photoinduced shifts of these energy levels. Here, we present a comprehensive study detailing how variation of the substitution pattern of DAE compounds, in particular using strongly electron-accepting and chemically stable trifluoromethyl groups either in the periphery or at the reactive carbon atoms, allows for the precise tuning of frontier molecular orbital levels over a broad energy range and the generation of photoinduced shifts of more than 1 eV. Furthermore, the effect of different DAE architectures on the transduction of these shifts to an adjacent functional group is discussed. Whereas substitution in the periphery of the DAE motif has only minor implications on the photochemistry, trifluoromethylation at the reactive carbon atoms strongly disturbs the isomerization efficiency. However, this can be overcome by using a nonsymmetrical substitution pattern or by combination with donor groups, rendering the resulting photoswitches attractive candidates for the construction of remote-controlled functional systems.

10.
J Am Chem Soc ; 139(1): 335-341, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27997152

ABSTRACT

A variety of azobenzenes were synthesized to study the behavior of their E and Z isomers upon electrochemical reduction. Our results show that the radical anion of the Z isomer is able to rapidly isomerize to the corresponding E configured counterpart with a dramatically enhanced rate as compared to the neutral species. Due to a subsequent electron transfer from the formed E radical anion to the neutral Z starting material the overall transformation is catalytic in electrons; i.e., a substoichiometric amount of reduced species can isomerize the entire mixture. This pathway greatly increases the efficiency of (photo)switching while also allowing one to reach photostationary state compositions that are not restricted to the spectral separation of the individual azobenzene isomers and their quantum yields. In addition, activating this radical isomerization pathway with photoelectron transfer agents allows us to override the intrinsic properties of an azobenzene species by triggering the reverse isomerization direction (Z → E) by the same wavelength of light, which normally triggers E → Z isomerization. The behavior we report appears to be general, implying that the metastable isomer of a photoswitch can be isomerized to the more stable one catalytically upon reduction, permitting the optimization of azobenzene switching in new as well as indirect ways.

11.
Angew Chem Int Ed Engl ; 55(3): 1208-12, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26662470

ABSTRACT

A diarylethene photoswitch was covalently connected to two small triplet sensitizer moieties in a conjugated and nonconjugated fashion and the photochromic performance of the resulting compounds was investigated. In comparison with the parent diarylethene (without sensitizers) and one featuring saturated linkages, the conjugated photoswitch offers superior fatigue resistance upon visible-light excitation due to effective triplet energy transfer from the biacetyl termini to the diarylethene core. Our design makes it possible to switch diarylethenes with visible light in both directions in a highly efficient and robust fashion based on extending π-conjugation and by-product-free ring-closure via the triplet manifold.

12.
Angew Chem Int Ed Engl ; 55(4): 1544-7, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26679769

ABSTRACT

Two-NIR-photon-triggered Z→E isomerization of an azobenzene was accomplished by covalently linking a two-photon-harvesting triarylamine antenna to a thermally stable ortho-fluorinated azobenzene derivative. The obtained photoswitch is fully addressable with visible and NIR light by using one-photon and two-photon excitation, respectively, with the latter offering enhanced penetration depth and improved spatial resolution.

13.
J Am Chem Soc ; 137(7): 2738-47, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25679768

ABSTRACT

When applying photochromic switches as functional units in light-responsive materials or devices, an often disregarded yet crucial property is their resistance to fatigue during photoisomerization. In the large family of diarylethene photoswitches, formation of an annulated isomer as a byproduct of the photochromic reaction turns out to prevent the desired high reversibility for many different derivatives. To overcome this general problem, we have synthesized and thoroughly investigated the fatigue behavior of a series of diarylethenes, varying the nature of the hetaryl moieties, the bridging units, and the substituents. By analysis of photokinetic data, a quantification of the tendency for byproduct formation in terms of quantum yields could be achieved, and a strong dependency on the electronic properties of the substituents was observed. In particular, substitution with 3,5-bis(trifluoromethyl)phenyl or 3,5-bis(pentafluorosulfanyl)phenyl groups strongly suppresses the byproduct formation and opens up a general strategy to construct highly fatigue-resistant diarylethene photochromic systems with a large structural flexibility.

14.
Chemistry ; 18(45): 14282-5, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23033200

ABSTRACT

Better switching: The introduction of bulky substituents into the bridge moiety of dithienylethenes led to derivatives exhibiting high photocyclization quantum yields. This novel and versatile form of substitution facilitated tuning of the switching performance without compromising on the optical and redox properties of the ring-open and ring-closed forms (see scheme).

15.
Nat Chem ; 4(8): 675-9, 2012 Jun 24.
Article in English | MEDLINE | ID: mdl-22824901

ABSTRACT

Organic semiconductors are suitable candidates for printable, flexible and large-area electronics. Alongside attaining an improved device performance, to confer a multifunctional nature to the employed materials is key for organic-based logic applications. Here we report on the engineering of an electronic structure in a semiconducting film by blending two molecular components, a photochromic diarylethene derivative and a poly(3-hexylthiophene) (P3HT) matrix, to attain phototunable and bistable energy levels for the P3HT's hole transport. As a proof-of-concept we exploited this blend as a semiconducting material in organic thin-film transistors. The device illumination at defined wavelengths enabled reversible tuning of the diarylethene's electronic states in the blend, which resulted in modulation of the output current. The device photoresponse was found to be in the microsecond range, and thus on a technologically relevant timescale. This modular blending approach allows for the convenient incorporation of various molecular components, which opens up perspectives on multifunctional devices and logic circuits.

16.
J Phys Chem B ; 115(33): 9930-40, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21749103

ABSTRACT

A strategy to optimize the photoswitching efficiency of rigid, linear multiazobenzene constructs is presented. It consists of introducing large dihedral angles between azobenzene moieties linked via aryl-aryl connections in their para positions. Four bisazobenzenes exhibiting different dihedral angles as well as three single azobenzene reference compounds have been synthesized, and their switching behavior has been studied as well as experimentally and theoretically analyzed. As the dihedral angle between the two azobenzene units increases and consequently the electronic conjugation decreases, the photochromic characteristics improve, finally leading to individual azobenzene switches operating independently in the case of the perpendicular ortho,ortho,ortho',ortho'-tetramethyl biphenyl linker. The electronic decoupling leads to efficient separation of the absorption spectra of the involved switching states and hence by choosing the appropriate irradiation wavelength, an almost quantitative E → Z photoisomerization up to 97% overall Z-content can be achieved. In addition, thermal Z → E isomerization processes become independent of each other with increasing decoupling. The electronic decoupling could furthermore be proven by electrochemistry. The experimental data are supported by theory, and calculations additionally provide mechanistic insight into the preferred pathway for the thermal Z,Z → Z,E → E,E isomerization via inversion on the inner N-atoms. Our decoupling approach outlined herein provides the basis for constructing rigid rod architectures composed of multiple azobenzene photochromes, which display practically quantitative photoswitching properties, a necessary prerequisite to achieve highly efficient transduction of light energy directly into motion.

17.
Chem Commun (Camb) ; 47(1): 460-2, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21188790

ABSTRACT

Photochromic bis(thiazol-4-yl)maleimides, displaying enhanced binding affinity to complementary melamine receptors in their ring-closed switching state, have been developed and could pave the way to light-responsive supramolecular assemblies.


Subject(s)
Macromolecular Substances/chemistry , Maleimides/chemistry , Thiazoles/chemistry , Hydrogen Bonding , Light , Molecular Structure , Photochemistry , Stereoisomerism , Triazines/chemistry
19.
Chemistry ; 10(14): 3562-8, 2004 Jul 19.
Article in English | MEDLINE | ID: mdl-15252804

ABSTRACT

Novel [2]rotaxanes containing the tetracationic cyclophane cyclobis(paraquat-4,4-biphenylene) and a dumbbell-shaped molecular thread incorporating a photoactive diarylcycloheptatriene station as well as a photoinactive anisol station have been synthesized with yields of nearly 50 % by the alkylative endcapping method. The rotaxane was transformed into the related rotaxane incorporating a diaryl tropylium unit by electrochemical oxidation. The precursor of the cycloheptatrienyl rotaxane, the related pseudorotaxane, and the rotaxanes incorporating the diarylcycloheptatriene and the corresponding tropylium unit were characterized by (1)HNMR spectroscopy and UV/Vis spectroscopy. According to the NMR spectra, both the cycloheptatriene and the tropylium rotaxane possess a folded conformation enabling the tetracationic cyclophane to interact with two stations. The diarylcycloheptatriene station is incorporated inside the cavity of the cyclophane and the anisol station resides alongside the bipyridinium unit of the cyclophane. In contrast, the anisol station is inside the cyclophane in the tropylium rotaxane. The exchange between both conformations can be achieved by introducing the methoxy leaving group into the cycloheptatriene ring; the tropylium rotaxane is generated by photoheterolysis of this methoxy-substituted rotaxane, which reacts thermally back to the cycloheptatriene rotaxane, thus closing the switching cycle. These induced conformational changes achieve a so-called molecular machine.

SELECTION OF CITATIONS
SEARCH DETAIL
...