Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000497

ABSTRACT

This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.


Subject(s)
Bacteriophages , Genome, Viral , Phylogeny , Sinorhizobium , Soil Microbiology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/classification , Bacteriophages/physiology , Sinorhizobium/genetics , Sinorhizobium/virology , Sinorhizobium/physiology , Open Reading Frames
2.
Oncotarget ; 8(32): 53730-53739, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28881846

ABSTRACT

Elenagen is a plasmid encoding p62/SQSTM1, the first DNA vaccine possessing two mutually complementing mechanisms of action: it elicits immune response against p62 and mitigates systemic chronic inflammation. Previously, Elenagen demonstrated anti-tumor efficacy and safety in rodent tumor models and spontaneous tumors in dogs. This multicenter I/IIa trial evaluated safety and clinical activity of Elenagen in patients with advanced solid tumors. Fifteen patients were treated with escalating doses of Elenagen (1- 5 mg per doses, 5 times weekly) and additional 12 patients received 1 mg dose. Ten patients with breast and ovary cancers that progressed after Elenagen were then treated with conventional chemotherapy. Adverse events (AE) were of Grade 1; no severe AE were observed. Cumulatively twelve patients (44%) with breast, ovary, lung, renal cancer and melanoma achieved stable disease for at least 8 wks, with 4 of them (15%) had tumor control for more than 24 wks, with a maximum of 32 wks. The patients with breast and ovary cancers achieved additional tumor stabilization for 12-28 wks when treated with chemotherapy following Elenagen treatment. Therefore, Elenagen demonstrated good safety profile and antitumor activity in advanced solid tumors. Especially encouraging is its ability to restore tumor sensitivity to chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...