Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol ; 153(1): 320-329.e8, 2024 01.
Article in English | MEDLINE | ID: mdl-37678576

ABSTRACT

BACKGROUND: Electronic cigarette (e-cigarette) use continues to rise despite concerns of long-term effects, especially the risk of developing lung diseases such as chronic obstructive pulmonary disease. Neutrophils are central to the pathogenesis of chronic obstructive pulmonary disease, with changes in phenotype and function implicated in tissue damage. OBJECTIVE: We sought to measure the impact of direct exposure to nicotine-containing and nicotine-free e-cigarette vapor on human neutrophil function and phenotype. METHODS: Neutrophils were isolated from the whole blood of self-reported nonsmoking, nonvaping healthy volunteers. Neutrophils were exposed to 40 puffs of e-cigarette vapor generated from e-cigarette devices using flavorless e-cigarette liquids with and without nicotine before functions, deformability, and phenotype were assessed. RESULTS: Neutrophil surface marker expression was altered, with CD62L and CXCR2 expression significantly reduced in neutrophils treated with e-cigarette vapor containing nicotine. Neutrophil migration to IL-8, phagocytosis of Escherichia coli and Staphylococcus aureus pHrodo bioparticles, oxidative burst response, and phorbol 12-myristate 13-acetate-stimulated neutrophil extracellular trap formation were all significantly reduced by e-cigarette vapor treatments, independent of nicotine content. E-cigarette vapor induced increased levels of baseline polymerized filamentous actin levels in the cytoplasm, compared with untreated controls. CONCLUSIONS: The significant reduction in effector neutrophil functions after exposure to high-power e-cigarette devices, even in the absence of nicotine, is associated with excessive filamentous actin polymerization. This highlights the potentially damaging impact of vaping on respiratory health and reinforces the urgency of research to uncover the long-term health implications of e-cigarettes.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Pulmonary Disease, Chronic Obstructive , Humans , Neutrophils , E-Cigarette Vapor/metabolism , E-Cigarette Vapor/pharmacology , Nicotine/adverse effects , Nicotine/metabolism , Actins/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
2.
BMJ Open Respir Res ; 10(1)2023 10.
Article in English | MEDLINE | ID: mdl-37827807

ABSTRACT

INTRODUCTION: Community-acquired pneumonia has high mortality and is associated with significant healthcare costs. In older adults with community-acquired pneumonia neutrophil dysfunction has been identified and is associated with poor outcomes for patients. Immunometabolism is a rapidly developing field which links immune cell function to metabolism. This study aims to explore neutrophil metabolism in community-acquired pneumonia. METHODS AND ANALYSIS: Pneumonia Metabolism in Ageing study is a prospective observational study recruiting older adults hospitalised with community-acquired pneumonia to examine neutrophil function and metabolic status. Controls will be older adults with no acute illness. The primary endpoint is neutrophil chemotaxis. ETHICS AND DISSEMINATION: The study has ethical approval from the Research Ethics Committee Wales, reference 19/WA/0299. This study involves participants who may lack the capacity to consent to research involvement, in this situation, personal or professional assent will be sought. The results from this study will be submitted for publication in peer-reviewed journals and disseminated at local and international conferences.


Subject(s)
Community-Acquired Infections , Pneumonia , Sepsis , Humans , Aged , Neutrophils/metabolism , Apoptosis Regulatory Proteins/metabolism , Pneumonia/metabolism , Cohort Studies , Aging , Observational Studies as Topic
3.
Front Immunol ; 14: 1083072, 2023.
Article in English | MEDLINE | ID: mdl-37180154

ABSTRACT

Neutrophil responses are critical during inflammatory and infective events, and neutrophil dysregulation has been associated with poor patient outcomes. Immunometabolism is a rapidly growing field that has provided insights into cellular functions in health and disease. Neutrophils are highly glycolytic when activated, with inhibition of glycolysis associated with functional deficits. There is currently very limited data available assessing metabolism in neutrophils. Extracellular flux (XF) analysis assesses real time oxygen consumption and the rate of proton efflux in cells. This technology allows for the automated addition of inhibitors and stimulants to visualise the effect on metabolism. We describe optimised protocols for an XFe96 XF Analyser to (i) probe glycolysis in neutrophils under basal and stimulated conditions, (ii) probe phorbol 12-myristate 13-acetate induced oxidative burst, and (iii) highlight challenges of using XF technology to examine mitochondrial function in neutrophils. We provide an overview of how to analyze XF data and identify pitfalls of probing neutrophil metabolism with XF analysis. In summary we describe robust methods for assessing glycolysis and oxidative burst in human neutrophils and discuss the challenges around using this technique to assess mitochondrial respiration. XF technology is a powerful platform with a user-friendly interface and data analysis templates, however we suggest caution when assessing neutrophil mitochondrial respiration.


Subject(s)
Neutrophils , Respiratory Burst , Humans , Neutrophils/metabolism , Oxygen Consumption , Mitochondria/metabolism
4.
Cells ; 11(18)2022 09 16.
Article in English | MEDLINE | ID: mdl-36139476

ABSTRACT

Rationale: Infection with the SARS-CoV2 virus is associated with elevated neutrophil counts. Evidence of neutrophil dysfunction in COVID-19 is based on transcriptomics or single functional assays. Cell functions are interwoven pathways, and understanding the effect across the spectrum of neutrophil function may identify therapeutic targets. Objectives: Examine neutrophil phenotype and function in 41 hospitalised, non-ICU COVID-19 patients versus 23 age-matched controls (AMC) and 26 community acquired pneumonia patients (CAP). Methods: Isolated neutrophils underwent ex vivo analyses for migration, bacterial phagocytosis, ROS generation, NETosis and receptor expression. Circulating DNAse 1 activity, levels of cfDNA, MPO, VEGF, IL-6 and sTNFRI were measured and correlated to clinical outcome. Serial sampling on day three to five post hospitalization were also measured. The effect of ex vivo PI3K inhibition was measured in a further cohort of 18 COVID-19 patients. Results: Compared to AMC and CAP, COVID-19 neutrophils demonstrated elevated transmigration (p = 0.0397) and NETosis (p = 0.0332), and impaired phagocytosis (p = 0.0036) associated with impaired ROS generation (p < 0.0001). The percentage of CD54+ neutrophils (p < 0.001) was significantly increased, while surface expression of CD11b (p = 0.0014) and PD-L1 (p = 0.006) were significantly decreased in COVID-19. COVID-19 and CAP patients showed increased systemic markers of NETosis including increased cfDNA (p = 0.0396) and impaired DNAse activity (p < 0.0001). The ex vivo inhibition of PI3K γ and δ reduced NET release by COVID-19 neutrophils (p = 0.0129). Conclusions: COVID-19 is associated with neutrophil dysfunction across all main effector functions, with altered phenotype, elevated migration and NETosis, and impaired antimicrobial responses. These changes highlight that targeting neutrophil function may help modulate COVID-19 severity.


Subject(s)
COVID-19 , Neutrophils , B7-H1 Antigen , COVID-19/immunology , Cell-Free Nucleic Acids , Deoxyribonucleases , Humans , Interleukin-6/pharmacology , Neutrophils/cytology , Phenotype , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species/metabolism , SARS-CoV-2
5.
Clin Med (Lond) ; 22(1): 63-70, 2022 01.
Article in English | MEDLINE | ID: mdl-35078796

ABSTRACT

BACKGROUND: Severity scores in pneumonia and sepsis are being applied to SARS-CoV-2 infection. We aimed to assess whether these severity scores are accurate predictors of early adverse outcomes in COVID-19. METHODS: We conducted a multicentre observational study of hospitalised SARS-CoV-2 infection. We assessed risk scores (CURB65, qSOFA, Lac-CURB65, MuLBSTA and NEWS2) in relation to admission to intensive care or death within 7 days of admission, defined as early severe adverse events (ESAE). The 4C Mortality Score was also assessed in a sub-cohort of patients. FINDINGS: In 2,387 participants, the overall mortality was 18%. In all scores examined, increasing score was associated with increased risk of ESAE. Area under the curve (AUC) to predict ESAE for CURB65, qSOFA, Lac-CURB65, MuLBSTA and NEWS2 were 0.61, 0.62, 0.59, 0.59 and 0.68, respectively. AUC to predict ESAE was 0.60 with ISARIC 4C Mortality Score. CONCLUSION: None of the scores examined accurately predicted ESAE in SARS-CoV-2 infection. Non-validated scores should not be used to inform clinical decision making in COVID-19.


Subject(s)
COVID-19 , Pneumonia , Hospital Mortality , Humans , Pneumonia/diagnosis , Pneumonia/epidemiology , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
6.
Biochem J ; 478(17): 3157-3178, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34492096

ABSTRACT

Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Fungi/metabolism , Host-Pathogen Interactions , Lactic Acid/metabolism , Mycoses/metabolism , Parasites/metabolism , Parasitic Diseases/metabolism , Virus Diseases/metabolism , Viruses/metabolism , Animals , Bacterial Infections/microbiology , Humans , Monocarboxylic Acid Transporters/metabolism , Mycoses/microbiology , Parasitic Diseases/parasitology , Virus Diseases/virology
7.
BMJ Open Respir Res ; 6(1): e000438, 2019.
Article in English | MEDLINE | ID: mdl-31258921

ABSTRACT

Background: Community-acquired pneumonia (CAP) is a leading cause of sepsis worldwide. Prompt identification of those at high risk of adverse outcomes improves survival by enabling early escalation of care. There are multiple severity assessment tools recommended for risk stratification; however, there is no consensus as to which tool should be used for those with CAP. We sought to assess whether pneumonia-specific, generic sepsis or early warning scores were most accurate at predicting adverse outcomes. Methods: We performed a retrospective analysis of all cases of CAP admitted to a large, adult tertiary hospital in the UK between October 2014 and January 2016. All cases of CAP were eligible for inclusion and were reviewed by a senior respiratory physician to confirm the diagnosis. The association between the CURB65, Lac-CURB-65, quick Sequential (Sepsis-related) Organ Failure Assessment tool (qSOFA) score and National Early Warning Score (NEWS) at the time of admission and outcome measures including intensive care admission, length of hospital stay, in-hospital, 30-day, 90-day and 365-day all-cause mortality was assessed. Results: 1545 cases were included with 30-day mortality of 19%. Increasing score was significantly associated with increased risk of poor outcomes for all four tools. Overall accuracy assessed by receiver operating characteristic curve analysis was significantly greater for the CURB65 and Lac-CURB-65 scores than qSOFA. At admission, a CURB65 ≥2, Lac-CURB-65 ≥moderate, qSOFA ≥2 and NEWS ≥medium identified 85.0%, 96.4%, 40.3% and 79.0% of those who died within 30 days, respectively. A Lac-CURB-65 ≥moderate had the highest negative predictive value: 95.6%. Conclusion: All four scoring systems can stratify according to increasing risk in CAP; however, when a confident diagnosis of pneumonia can be made, these data support the use of pneumonia-specific tools rather than generic sepsis or early warning scores.


Subject(s)
Community-Acquired Infections/diagnosis , Pneumonia/diagnosis , Sepsis/mortality , Severity of Illness Index , Aged , Aged, 80 and over , Community-Acquired Infections/complications , Community-Acquired Infections/mortality , Community-Acquired Infections/therapy , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Middle Aged , Organ Dysfunction Scores , Patient Admission/statistics & numerical data , Pneumonia/complications , Pneumonia/mortality , Pneumonia/therapy , Prognosis , ROC Curve , Retrospective Studies , Risk Assessment , Sepsis/etiology , Time Factors , Time-to-Treatment
9.
Clin Med (Lond) ; 17(5): 403-407, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28974587

ABSTRACT

Community-acquired pneumonia (CAP) is the leading cause of death from infection in developed countries. There is evidence of an association between improved survival from infection and statin use. The possible beneficial effects of statins are complicated by the common use of macrolide antibiotics for pneumonia, with current guidance suggesting that concurrent macrolide and statin use is contraindicated.We conducted an observational study of statin use in patients with CAP. Of 2,067 patients with CAP, 30.4% were on statin therapy at admission. Statin users were more likely to survive the admission (p<0.001). In addition, we conducted a survey of doctors and found that knowledge regarding concurrent macrolide and statin use was lacking.These data suggest a potential role of statins in the management of CAP. Further research using high-dose statins is required to assess their safe use in subjects with mild to moderate infections.


Subject(s)
Community-Acquired Infections/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Immunologic Factors/therapeutic use , Pneumonia/drug therapy , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Community-Acquired Infections/complications , Community-Acquired Infections/epidemiology , Community-Acquired Infections/mortality , Diabetes Complications , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Immunologic Factors/administration & dosage , Length of Stay , Macrolides/therapeutic use , Male , Middle Aged , Pneumonia/complications , Pneumonia/epidemiology , Pneumonia/mortality , Sepsis
SELECTION OF CITATIONS
SEARCH DETAIL
...