Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Field Crops Res ; 308: 109278, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495465

ABSTRACT

Context: Agronomic data such as applied inputs, management practices, and crop yields are needed for assessing productivity, nutrient balances, resource use efficiency, as well as other aspects of environmental and economic performance of cropping systems. In many instances, however, these data are only available at a coarse level of aggregation or simply do not exist. Objectives: Here we developed an approach that identifies sites for agronomic data collection for a given crop and country, seeking a balance between minimizing data collection efforts and proper representation of the main crop producing areas. Methods: The developed approach followed a stratified sampling method based on a spatial framework that delineates major climate zones and crop area distribution maps, which guides selection of sampling areas (SA) until half of the national harvested area is covered. We provided proof of concept about the robustness of the approach using three rich databases including data on fertilizer application rates for maize, wheat, and soybean in Argentina, soybean in the USA, and maize in Kenya, which were collected via local experts (Argentina) and field surveys (USA and Kenya). For validation purposes, fertilizer rates per crop and nutrient derived at (sub-) national level following our approach were compared against those derived using all data collected from the whole country. Results: Application of the approach in Argentina, USA, and Kenya resulted in selection of 12, 28, and 10 SAs, respectively. For each SA, three experts or 20 fields were sufficient to give a robust estimate of average fertilizer rates applied by farmers. Average rates at national level derived from our approach compared well with those derived using the whole database ( ± 10 kg N, ± 2 kg P, ± 1 kg S, and ± 5 kg K per ha) requiring less than one third of the observations. Conclusions: The developed minimum crop data collection approach can fill the agronomic data gaps in a cost-effective way for major crop systems both in large- and small-scale systems. Significance: The proposed approach is generic enough to be applied to any crop-country combination to guide collection of key agricultural data at national and subnational levels with modest investment especially for countries that do not currently collect data.

2.
Sci Data ; 9(1): 501, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978058

ABSTRACT

Understanding how much inorganic fertilizer (referred to as fertilizer) is applied to different crops at national, regional and global levels is an essential component of fertilizer consumption analysis and demand projection. Good information on fertilizer use by crop (FUBC) is rarely available because it is difficult to collect and time-consuming to process and validate. To fill this gap, a first global FUBC report was published in 1992 for the 1990/1991 period, based on an expert survey conducted jointly by the Food and Agriculture Organization (FAO) of the UN, the International Fertilizer Development Center (IFDC) and the International Fertilizer Association (IFA). Since then, similar expert surveys have been carried out and published every two to four years in the main fertilizer-consuming countries. Since 2008 IFA has led these efforts and, to our knowledge, remains the only globally available data set on FUBC. This dataset includes data (in CSV format) from a survey carried out by IFA to represent the 2017-18 period as well as a collation of all historic FUBC data.


Subject(s)
Agriculture , Fertilizers , Crops, Agricultural , Nitrogen , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...