Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36361946

ABSTRACT

The split-Green Fluorescent Protein (GFP) reassembly assay is a powerful approach to study protein-protein interactions (PPIs). In this assay, two proteins, respectively, fused to the first seven and the last four ß-strands of GFP are co-expressed in E. coli where they can bind to each other, which reconstitutes the full-length GFP. Thus, the fluorescence of the bacteria co-expressing the two fusion proteins accounts for the interaction of the two proteins of interest. The first split-GFP reassembly assay was devised in the early 2000s in Regan's lab. During the last ten years, we have been extensively using this assay to study the interactions of an intrinsically disordered protein (IDP) with two globular partners. Over that period, in addition to accumulating molecular information on the specific interactions under study, we progressively modified the original technique and tested various parameters. In those previous studies, however, we focused on the mechanistic insights provided by the approach, rather than on the method itself. Since methodological aspects deserve attention and the best bipartite reporter to study PPIs involving IDPs remains to be identified, we herein focus on technical aspects. To this end, we first revisit our previous modifications of the original method and then investigate the impact of a panel of additional parameters. The present study unveiled a few critical parameters that deserve consideration to avoid pitfalls and obtain reliable results.


Subject(s)
Biological Assay , Escherichia coli , Green Fluorescent Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Nat Nanotechnol ; 16(2): 181-189, 2021 02.
Article in English | MEDLINE | ID: mdl-33230318

ABSTRACT

Intrinsically disordered proteins (IDPs) are ubiquitous proteins that are disordered entirely or partly and play important roles in diverse biological phenomena. Their structure dynamically samples a multitude of conformational states, thus rendering their structural analysis very difficult. Here we explore the potential of high-speed atomic force microscopy (HS-AFM) for characterizing the structure and dynamics of IDPs. Successive HS-AFM images of an IDP molecule can not only identify constantly folded and constantly disordered regions in the molecule, but can also document disorder-to-order transitions. Moreover, the number of amino acids contained in these disordered regions can be roughly estimated, enabling a semiquantitative, realistic description of the dynamic structure of IDPs.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Microscopy, Atomic Force , Humans , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Molecular Imaging , Mutation , Protein Conformation , Protein Folding , Quantitative Structure-Activity Relationship
4.
Nature ; 571(7765): 408-412, 2019 07.
Article in English | MEDLINE | ID: mdl-31243370

ABSTRACT

Mutations in the transcription factor FOXA1 define a unique subset of prostate cancers but the functional consequences of these mutations and whether they confer gain or loss of function is unknown1-9. Here, by annotating the landscape of FOXA1 mutations from 3,086 human prostate cancers, we define two hotspots in the forkhead domain: Wing2 (around 50% of all mutations) and the highly conserved DNA-contact residue R219 (around 5% of all mutations). Wing2 mutations are detected in adenocarcinomas at all stages, whereas R219 mutations are enriched in metastatic tumours with neuroendocrine histology. Interrogation of the biological properties of wild-type FOXA1 and fourteen FOXA1 mutants reveals gain of function in mouse prostate organoid proliferation assays. Twelve of these mutants, as well as wild-type FOXA1, promoted an exaggerated pro-luminal differentiation program, whereas two different R219 mutants blocked luminal differentiation and activated a mesenchymal and neuroendocrine transcriptional program. Assay for transposase-accessible chromatin using sequencing (ATAC-seq) of wild-type FOXA1 and representative Wing2 and R219 mutants revealed marked, mutant-specific changes in open chromatin at thousands of genomic loci and exposed sites of FOXA1 binding and associated increases in gene expression. Of note, ATAC-seq peaks in cells expressing R219 mutants lacked the canonical core FOXA1-binding motifs (GTAAAC/T) but were enriched for a related, non-canonical motif (GTAAAG/A), which was preferentially activated by R219-mutant FOXA1 in reporter assays. Thus, FOXA1 mutations alter its pioneering function and perturb normal luminal epithelial differentiation programs, providing further support for the role of lineage plasticity in cancer progression.


Subject(s)
Cell Differentiation/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Mutation , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Cell Lineage , Chromatin/genetics , Chromatin/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 3-alpha/chemistry , Humans , Male , Mice , Mice, Inbred NOD , Nucleotide Motifs , Organoids/cytology , Organoids/metabolism
5.
Cell Stem Cell ; 24(1): 153-165.e7, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30472158

ABSTRACT

Leukemias exhibit a dysregulated developmental program mediated through both genetic and epigenetic mechanisms. Although IKZF2 is expressed in hematopoietic stem cells (HSCs), we found that it is dispensable for mouse and human HSC function. In contrast to its role as a tumor suppressor in hypodiploid B-acute lymphoblastic leukemia, we found that IKZF2 is required for myeloid leukemia. IKZF2 is highly expressed in leukemic stem cells (LSCs), and its deficiency results in defective LSC function. IKZF2 depletion in acute myeloid leukemia (AML) cells reduced colony formation, increased differentiation and apoptosis, and delayed leukemogenesis. Gene expression, chromatin accessibility, and direct IKZF2 binding in MLL-AF9 LSCs demonstrate that IKZF2 regulates a HOXA9 self-renewal gene expression program and inhibits a C/EBP-driven differentiation program. Ectopic HOXA9 expression and CEBPE depletion rescued the effects of IKZF2 depletion. Thus, our study shows that IKZF2 regulates the AML LSC program and provides a rationale to therapeutically target IKZF2 in myeloid leukemia.


Subject(s)
Cell Differentiation , Cell Self Renewal , DNA-Binding Proteins/physiology , Gene Expression Regulation, Leukemic , Leukemia, Experimental/pathology , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Transcription Factors/physiology , Animals , Chromatin/genetics , Chromatin/metabolism , Female , Hematopoiesis , Leukemia, Experimental/genetics , Leukemia, Experimental/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplastic Stem Cells/metabolism
6.
Blood ; 132(12): 1265-1278, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30064973

ABSTRACT

Genetic studies have identified recurrent somatic mutations in acute myeloid leukemia (AML) patients, including in the Wilms' tumor 1 (WT1) gene. The molecular mechanisms by which WT1 mutations contribute to leukemogenesis have not yet been fully elucidated. We investigated the role of Wt1 gene dosage in steady-state and pathologic hematopoiesis. Wt1 heterozygous loss enhanced stem cell self-renewal in an age-dependent manner, which increased stem cell function over time and resulted in age-dependent leukemic transformation. Wt1-haploinsufficient leukemias were characterized by progressive genetic and epigenetic alterations, including those in known leukemia-associated alleles, demonstrating a requirement for additional events to promote hematopoietic transformation. Consistent with this observation, we found that Wt1 depletion cooperates with Flt3-ITD mutation to induce fully penetrant AML. Our studies provide insight into mechanisms of Wt1-loss leukemogenesis and into the evolutionary events required to induce transformation of Wt1-haploinsufficient stem/progenitor cells.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation , Repressor Proteins/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Self Renewal , Gene Deletion , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Leukopoiesis , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Myeloid Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , WT1 Proteins , fms-Like Tyrosine Kinase 3/genetics
7.
PLoS Pathog ; 12(12): e1006058, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27936158

ABSTRACT

Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.


Subject(s)
Measles/virology , Nucleoproteins/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Calorimetry , Circular Dichroism , DNA, Intergenic , Humans , Mass Spectrometry , Measles/metabolism , Measles virus/chemistry , Measles virus/metabolism , Models, Molecular , Nucleocapsid Proteins , Nucleoproteins/chemistry , Protein Binding , Transcription, Genetic , Viral Proteins/chemistry
8.
FEBS J ; 283(4): 576-94, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26684000

ABSTRACT

Despite the partial disorder-to-order transition that intrinsically disordered proteins often undergo upon binding to their partners, a considerable amount of residual disorder may be retained in the bound form, resulting in a fuzzy complex. Fuzzy regions flanking molecular recognition elements may enable partner fishing through non-specific, transient contacts, thereby facilitating binding, but may also disfavor binding through various mechanisms. So far, few computational or experimental studies have addressed the effect of fuzzy appendages on partner recognition by intrinsically disordered proteins. In order to shed light onto this issue, we used the interaction between the intrinsically disordered C-terminal domain of the measles virus (MeV) nucleoprotein (NTAIL ) and the X domain (XD) of the viral phosphoprotein as model system. After binding to XD, the N-terminal region of NTAIL remains conspicuously disordered, with α-helical folding taking place only within a short molecular recognition element. To study the effect of the N-terminal fuzzy region on NTAIL /XD binding, we generated N-terminal truncation variants of NTAIL , and assessed their binding abilities towards XD. The results revealed that binding increases with shortening of the N-terminal fuzzy region, with this also being observed with hsp70 (another MeV NTAIL binding partner), and for the homologous NTAIL /XD pairs from the Nipah and Hendra viruses. Finally, similar results were obtained when the MeV NTAIL fuzzy region was replaced with a highly dissimilar artificial disordered sequence, supporting a sequence-independent inhibitory effect of the fuzzy region.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Measles virus/chemistry , Nucleoproteins/chemistry , Phosphoproteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Protein Binding
9.
Front Microbiol ; 6: 1002, 2015.
Article in English | MEDLINE | ID: mdl-26441929

ABSTRACT

Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users' community.

10.
Adv Exp Med Biol ; 870: 351-81, 2015.
Article in English | MEDLINE | ID: mdl-26387109

ABSTRACT

In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Paramyxoviridae/chemistry , Paramyxoviridae/physiology , Viral Proteins/chemistry , Virus Replication , Protein Conformation
11.
J Mol Biol ; 425(18): 3495-509, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-23811056

ABSTRACT

In view of getting insights into the molecular determinants of the binding efficiency of intrinsically disordered proteins (IDPs), we used random mutagenesis. As a proof of concept, we chose the interaction between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein and assessed how amino acid substitutions introduced at random within NTAIL affect partner recognition. In contrast with directed evolution approaches, we did not apply any selection and used the gene library approach not for production purposes but for achieving a better understanding of the NTAIL/XD interaction. For that reason, and to differentiate our approach from similar approaches that make use of systematic (i.e., targeted) mutagenesis, we propose to call it "descriptive random mutagenesis" (DRM). NTAIL variants generated by error-prone PCR were picked at random in the absence of selection pressure and were characterized in terms of sequence and binding abilities toward XD. DRM not only identified determinants of NTAIL/XD interaction that were in good agreement with previous work but also provided new insights. In particular, we discovered that the primary interaction site is poorly evolvable in terms of binding abilities toward XD. We also identified a critical NTAIL residue whose role in stabilizing the NTAIL/XD complex had previously escaped detection, and we identified NTAIL regulatory sites that dampen the interaction while being located outside the primary interaction site. Results show that DRM is a valuable approach to study binding abilities of IDPs.


Subject(s)
Mutagenesis/physiology , Protein Folding , Protein Interaction Mapping/methods , Amino Acid Sequence , Amino Acid Substitution/physiology , Fluorescence , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutation/physiology , Peptide Library , Protein Binding , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
12.
Methods Mol Biol ; 895: 361-86, 2012.
Article in English | MEDLINE | ID: mdl-22760328

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy is a technique that specifically detects unpaired electrons. EPR sensitive reporter groups (spin labels or spin probes) can be introduced into biological systems via site-directed spin labeling (SDSL). This is usually accomplished by cysteine-substitution mutagenesis followed by covalent modification of the unique sulfhydryl group with a selective nitroxide reagent. SDSL EPR spectroscopy has been shown to be a sensitive and powerful method to study structural transitions within intrinsically disordered proteins (IDPs). In this chapter, we provide a detailed experimental protocol for this approach and present a few examples of EPR spectral shapes illustrative of various mobility regimes of the spin probe, reflecting different protein topologies.


Subject(s)
Recombinant Fusion Proteins/chemistry , Algorithms , Chromatography, Affinity , Circular Dichroism , Cysteine/chemistry , Cysteine/genetics , Electron Spin Resonance Spectroscopy , Escherichia coli , Mutagenesis, Site-Directed , Nitrogen Oxides/chemistry , Polymerase Chain Reaction , Protein Binding , Protein Folding , Protein Structure, Secondary , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Staining and Labeling , Sucrose/chemistry , Trifluoroethanol/chemistry
13.
Microb Cell Fact ; 11: 14, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22289297

ABSTRACT

BACKGROUND: Error-prone PCR (epPCR) libraries are one of the tools used in directed evolution. The Gateway® technology allows constructing epPCR libraries virtually devoid of any background (i.e., of insert-free plasmid), but requires two steps: the BP and the LR reactions and the associated E. coli cell transformations and plasmid purifications. RESULTS: We describe a method for making epPCR libraries in Gateway® plasmids using an LR reaction without intermediate BP reaction. We also describe a BP-free and LR-free sub-cloning method for in-frame transferring the coding sequence of selected clones from the plasmid used to screen the library to another one devoid of tag used for screening (such as the green fluorescent protein). We report preliminary results of a directed evolution program using this method. CONCLUSIONS: The one-step method enables producing epPCR libraries of as high complexity and quality as does the regular, two-step, protocol for half the amount of work. In addition, it contributes to preserve the original complexity of the epPCR product.


Subject(s)
Cloning, Molecular , Gene Library , Genetic Techniques , Polymerase Chain Reaction , Plasmids/genetics , Plasmids/metabolism
14.
Mol Biosyst ; 8(1): 392-410, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22108848

ABSTRACT

Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.


Subject(s)
Nucleoproteins/chemistry , Nucleoproteins/metabolism , Protein Folding , Sequence Deletion , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Calorimetry , Chromatography, Gel , Circular Dichroism , Henipavirus , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Light , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Scattering, Radiation
15.
J Biol Chem ; 284(8): 4936-43, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19054771

ABSTRACT

Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.


Subject(s)
Adenosine Triphosphate/metabolism , Cadmium/pharmacology , Drug Resistance, Fungal/physiology , Glutathione/metabolism , Phytochelatins , Schizosaccharomyces/metabolism , ATP-Binding Cassette Transporters , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/genetics , Amino Acid Substitution , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Animals , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chelating Agents , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Knockout Techniques , Glutathione/genetics , Humans , Mutation, Missense , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...