Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 521(1-2): 184-195, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28188877

ABSTRACT

The purpose of this study was to obtain, characterize and evaluate the cytotoxicity and antimicrobial activity of coatings based on poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) - Lysozyme (P(3HB-3HV)/Lys) and P(3HB-3HV) - Polyethylene glycol - Lysozyme (P(3HB-3HV)/PEG/Lys) spheres prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique, in order to obtain functional and improved Ti-based implants. Morphological investigation of the coatings by Infrared Microscopy (IRM) and SEM revealed that the average diameter of P(3HB-3HV)/Lys spheres is around 2µm and unlike the drop cast samples, IRM recorded on MAPLE films revealed a good distribution of monitored functional groups on the entire scanned surface. The biological evaluation of MAPLE structured surfaces revealed an improved biocompatibility with respect to osteoblasts and endothelial cells as compared with Ti substrates and an enhanced anti-biofilm effect against Gram positive (Staphylococcus aureus) and Gram negative (Pseudomonas aeruginosa) tested strains. Thus, we propose that the fabricated P(3HB-3HV)/PEG/Lys and P(3HB-3HV)/Lys microspheres may be efficiently used as a matrix for controlled local drug delivery, with practical applications in developing improved medical surfaces for the reduction of implant-associated infections.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Delivery Systems , Muramidase/chemistry , Polyesters/chemistry , Cells, Cultured , Humans , Lasers , Microscopy, Electron, Scanning , Microspheres , Muramidase/pharmacology , Polyesters/pharmacology , Polyethylene Glycols/chemistry
2.
Biofabrication ; 7(1): 015014, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25797361

ABSTRACT

We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Magnetite Nanoparticles/chemistry , Microtechnology/methods , Adsorption , Biofilms/drug effects , Cell Line, Tumor , Ferric Compounds/chemistry , Humans , Lasers , Magnetite Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Sodium Dodecyl Sulfate/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Volatilization , X-Ray Diffraction
3.
Biofabrication ; 6(3): 035002, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24722318

ABSTRACT

Due to their persistence and resistance to the current therapeutic approaches, Staphylococcus aureus biofilm-associated infections represent a major cause of morbidity and mortality in the hospital environment. Since (+)-usnic acid (UA), a secondary lichen metabolite, possesses antimicrobial activity against Gram-positive cocci, including S. aureus, the aim of this study was to load magnetic polylactic-co-glycolic acid-polyvinyl alcohol (PLGA-PVA) microspheres with UA, then to obtain thin coatings using matrix-assisted pulsed laser evaporation and to quantitatively assess the capacity of the bio-nano-active modified surface to control biofilm formation by S. aureus, using a culture-based assay. The UA-loaded microspheres inhibited both the initial attachment of S. aureus to the coated surfaces, as well as the development of mature biofilms. In vitro bioevalution tests performed on the fabricated thin films revealed great biocompatibility, which may endorse them as competitive candidates for the development of improved non-toxic surfaces resistant to S. aureus colonization and as scaffolds for stem cell cultivation and tissue engineering.


Subject(s)
Benzofurans/pharmacology , Biocompatible Materials/chemical synthesis , Drug Carriers/chemical synthesis , Lactic Acid/chemical synthesis , Polyglycolic Acid/chemical synthesis , Staphylococcus aureus/drug effects , Benzofurans/chemistry , Biocompatible Materials/chemistry , Biofilms/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Drug Resistance, Bacterial , Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Staphylococcus aureus/physiology
4.
Biofabrication ; 5(1): 015007, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23254399

ABSTRACT

We report on the fabrication of magnetite/salicylic acid/silica shell/antibiotics (Fe(3)O(4)/SA/SiO(2)/ATB) thin films by matrix-assisted pulsed laser evaporation (MAPLE) to inert substrates. Fe(3)O(4)-based powder have been synthesized and investigated by XRD and TEM. All thin films were studied by FTIR, SEM and in vitro biological assays using Staphylococcus aureus and Pseudomonas aeruginosa reference strains, as well as eukaryotic HEp-2 cells. The influence of the obtained nanosystems on the microbial biofilm development as well as their biocompatibility has been assessed. For optimum deposition conditions, we obtained uniform adherent films with the composition identical with the raw materials. Fe(3)O(4)/SA/SiO(2)/ATB thin films had an inhibitory activity on the ability of microbial strains to initiate and develop mature biofilms, in a strain- and antibiotic-dependent manner. These magnetite silica thin films are promising candidates for the development of novel materials designed for the inhibition of medical biofilms formed by different pathogenic agents on common substrates, frequently implicated in the etiology of chronic and hard to treat infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Magnetite Nanoparticles/chemistry , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Drug Carriers/chemical synthesis , Drug Delivery Systems/methods , Lasers , Pseudomonas aeruginosa/drug effects , Silicon Dioxide/chemistry , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...