Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 205(1): 26-31, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-19631238

ABSTRACT

Periadolescence is a critical period during which environmental stimuli modulate developmental neural plasticity. This includes the density of mesolimbic dopamine (DA) projections and the mitotic dynamic in the hippocampal dentate gyrus, both involved in central structures for emotional and cognitive functioning. Behavioural tests suggest that even short periods of stimulation can have lasting developmental effects on cognitive and emotional measures. We therefore exposed animals kept in isolation to brief daily context changes during periadolescence (postnatal days 30-60). We assessed the effects on neural development after animals had reached adulthood at postnatal day 90 by measuring the density of dopamine fibres in the medial prefrontal cortex (PFC), nucleus accumbens (core and shell), olfactory tubercle, and amygdala (basolateral and central), and by labelling mitoses in the dentate gyrus by BrdU. In experimental animals as compared to deprived controls, dopamine fibre densities were increased in the PFC and basolateral amygdala, decreased in the central amygdala, but not altered in the ventral striatum. Hippocampal cell proliferation was decreased. These results show that even a low level of experimental sensory stimulation during periadolescence triggers neural developmental processes, with lasting effects into adulthood.


Subject(s)
Cell Proliferation , Dopamine/metabolism , Environment , Hippocampus/physiology , Sensory Deprivation/physiology , Social Behavior , Amygdala/growth & development , Amygdala/physiology , Animals , Basal Ganglia/growth & development , Basal Ganglia/physiology , Gerbillinae , Hippocampus/growth & development , Male , Mitosis , Neural Pathways/growth & development , Neural Pathways/physiology , Nucleus Accumbens/growth & development , Nucleus Accumbens/physiology , Olfactory Pathways/growth & development , Olfactory Pathways/physiology , Prefrontal Cortex/growth & development , Prefrontal Cortex/physiology , Random Allocation
2.
J Negat Results Biomed ; 7: 2, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18485211

ABSTRACT

It is widely believed, that environmental factors play a crucial role in the etiology and outcome of psychiatric diseases such as Attention-Deficit/Hyperactivity Disorder (ADHD). A former study from our laboratory has shown that both methylphenidate (MP) and handling have a positive effect on the dopaminergic fiber density in the prefrontal cortex (PFC) of early traumatized gerbils (Meriones unguiculatus). The current study was performed to investigate if enriched environment during MP application has an additional influence on the dopaminergic and GABAergic fiber densities in the PFC and amygdala in this animal model. Animals received a single early dose of methamphetamine (MA; 50 mg/kg; i.p.) on postnatal day (PD) 14, which is known to cause multiple changes in the subsequent development of several neurotransmitter systems including the dopaminergic systems, and were then treated with oral daily applications of MP (5 mg/kg) from PD30-60. Animals treated this way were either transferred to an enriched environment after weaning (on PD30) or were kept under impoverished rearing conditions. There was no effect of an enriched environment on the dopaminergic or GABAergic fiber density neither in the PFC nor in the amygdala. With regard to former studies these results underline the particular impact of MP in the treatment of ADHD.


Subject(s)
Amygdala/drug effects , Dopamine/metabolism , Methylphenidate/pharmacology , Nerve Fibers/drug effects , Neurons/drug effects , Prefrontal Cortex/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Dopamine Uptake Inhibitors/pharmacology , Environment , Gerbillinae , Models, Biological , Time Factors
3.
Brain Res ; 1176: 124-32, 2007 Oct 24.
Article in English | MEDLINE | ID: mdl-17900540

ABSTRACT

The enduring effects of postweaning subchronic methylphenidate (MP) treatment and/or previous early preweaning methamphetamine (MA) application on dopamine (DA) fiber density were investigated in multiple cortical and subcortical areas of the gerbil brain. The study aimed to explore three questions: (1) is the development of DA fiber innervation in control animals sensitive to a clinically relevant subchronic treatment with MP? (2) Is the development of DA fiber innervation in the forebrain altered by a single early MA challenge? (3) If so, might the subsequent institution of a therapeutically relevant MP application scheme interfere with such early induced alternative developmental trajectories for DA fiber innervation? For this purpose, gerbils pretreated both with saline and MA (50 mg/kg, i.p.) on day 14 received either H(2)O or MP (5 mg/kg) orally on days 30 to 60. On day 90, DA fibers were immunohistochemically detected and quantified. As a result, MP on its own did not have any significant influence on the postnatal development of the DA fiber systems, whereas it prevented a previously MA triggered suppressive development of DA fiber innervation in the prefrontal cortex and amygdala complex (30% less fiber innervation in both areas). Thus, MP prevented previously initiated miswiring of DA fibers from actually being implemented in the gerbil forebrain. During earlier studies, rather complex miswiring has been documented in response to an early preweaning MA challenge. This miswiring was associated with functional deficits resembling some of the symptoms of patients with ADHD. Therefore, morphogenetic properties of MP need further attention.


Subject(s)
Aging/drug effects , Amygdala/drug effects , Methylphenidate/pharmacology , Prefrontal Cortex/drug effects , Ventral Tegmental Area/drug effects , Administration, Oral , Aging/physiology , Amygdala/growth & development , Amygdala/metabolism , Animals , Attention Deficit Disorder with Hyperactivity/drug therapy , Central Nervous System Stimulants/pharmacology , Gerbillinae , Growth Cones/drug effects , Growth Cones/metabolism , Growth Cones/ultrastructure , Male , Neural Pathways/drug effects , Neural Pathways/growth & development , Neural Pathways/metabolism , Neurogenesis/drug effects , Neurogenesis/physiology , Prefrontal Cortex/growth & development , Prefrontal Cortex/metabolism , Ventral Tegmental Area/growth & development , Ventral Tegmental Area/metabolism
4.
Behav Brain Funct ; 2: 12, 2006 Mar 28.
Article in English | MEDLINE | ID: mdl-16569246

ABSTRACT

BACKGROUND: The aim of the study was to test long-term effects of (+)-methamphetamine (MA) on the dopamine (DA) innervation in limbo-cortical regions of adult gerbils, in order to understand better the repair and neuroplasticity in disturbed limbic networks. METHODS: Male gerbils received a single high dose of either MA (25 mg/kg i.p.) or saline on postnatal day 180. On postnatal day 340 the density of immunoreactive DA fibres and calbindin and parvalbumin cells was quantified in the right hemisphere. RESULTS: No effects were found in the prefrontal cortex, olfactory tubercle and amygdala, whereas the pharmacological impact induced a slight but significant DA hyperinnervation in the nucleus accumbens. The cell densities of calbindin (CB) and parvalbumin (PV) positive neurons were additionally tested in the nucleus accumbens, but no significant effects were found. The present results contrast with the previously published long-term effects of early postnatal MA treatment that lead to a restraint of the maturation of DA fibres in the nucleus accumbens and prefrontal cortex and a concomitant overshoot innervation in the amygdala. CONCLUSION: We conclude that the morphogenetic properties of MA change during maturation and aging of gerbils, which may be due to physiological alterations of maturing vs. mature DA neurons innervating subcortical and cortical limbic areas. Our findings, together with results from other long-term studies, suggest that immature limbic structures are more vulnerable to persistent effects of a single MA intoxication; this might be relevant for the assessment of drug experience in adults vs. adolescents, and drug prevention programs.

5.
Behav Brain Funct ; 2: 2, 2006 Jan 10.
Article in English | MEDLINE | ID: mdl-16403217

ABSTRACT

Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. In spite of its widespread application throughout one of the most plastic and sensitive phases of brain development, very little is known to date about its long-term effects on brain structure and function. Hence, this short review updates the influence of MPH on brain development, since recent human and animal studies suggest that MPH alters the dopaminergic system with long-term effects beyond the termination of treatment.Animal studies imply that the effects of MPH may depend on the neural responder system: Whereas structural and functional parameters are improved by MPH in animals with psychomotor impairments, they remain unaltered or get worse in healthy controls. While recent behavioural studies do not fully support such a differential effect of MPH in ADHD, the animal studies certainly prompt for further investigation of this issue. Furthermore, the abuse of MPH, when (rarely) intravenously applied, may even impair the maturation of dopaminergic fibres in subcortical brain areas. This argues for careful clinical assessment and diagnostics of ADHD symptomatology not only in conjunction with the prescription of MPH. Hence, one should be assured that MPH is only given to children with clear ADHD symptomatology leading to psychosocial impairment. The animal data suggest that under these conditions MPH is supportive for brain development and the related behaviour in children with ADHD.

SELECTION OF CITATIONS
SEARCH DETAIL
...