Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 13(4): 2286-2294, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36846822

ABSTRACT

[(NacNac)Zn(DMT)][B(C6F5)4], 1, (NacNac = {(2,6- i Pr2H3C6)N(CH3)C}2CH), DMT = N,N-dimethyl-4-toluidine), was synthesized via two routes starting from either (NacNac)ZnEt or (NacNac)ZnH. Complex 1 is an effective (pre)catalyst for the C-H borylation of (hetero)arenes using catecholborane (CatBH) with H2 the only byproduct. The scope included weakly activated substrates such as 2-bromothiophene and benzothiophene. Computational studies elucidated a plausible reaction mechanism that has an overall free energy span of 22.4 kcal/mol (for N-methylindole borylation), consistent with experimental observations. The calculated mechanism starting from 1 proceeds via the displacement of DMT by CatBH to form [(NacNac)Zn(CatBH)]+, D, in which CatBH binds via an oxygen to zinc which makes the boron center much more electrophilic based on the energy of the CatB-based LUMO. Combinations of D and DMT act as a frustrated Lewis pair (FLP) to effect C-H borylation in a stepwise process via an arenium cation that is deprotonated by DMT. Subsequent B-H/[H-DMT]+ dehydrocoupling and displacement from the coordination sphere of zinc of CatBAr by CatBH closes the cycle. The calculations also revealed a possible catalyst decomposition pathway involving hydride transfer from boron to zinc to form (NacNac)ZnH which reacts with CatBH to ultimately form Zn(0). In addition, the key rate-limiting transition states all involve the base, thus fine-tuning of the steric and electronic parameters of the base enabled a further minor enhancement in the C-H borylation activity of the system. Outlining the mechanism for all steps of this FLP-mediated process will facilitate the development of other main group FLP catalysts for C-H borylation and other transformations.

2.
Chem Sci ; 12(23): 8190-8198, 2021 May 13.
Article in English | MEDLINE | ID: mdl-34194709

ABSTRACT

Cationic zinc Lewis acids catalyse the C-H borylation of heteroarenes using pinacol borane (HBPin) or catechol borane (HBCat). An electrophile derived from [IDippZnEt][B(C6F5)4] (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) combined with N,N-dimethyl-p-toluidine (DMT) proved the most active in terms of C-H borylation scope and yield. Using this combination weakly activated heteroarenes, such as thiophene, were amenable to catalytic C-H borylation using HBCat. Competition reactions show these IDipp-zinc cations are highly oxophilic but less hydridophilic (relative to B(C6F5)3), and that borylation proceeds via activation of the hydroborane (and not the heteroarene) by a zinc electrophile. Based on DFT calculations this activation is proposed to proceed by coordination of a hydroborane oxygen to the zinc centre to generate a boron electrophile that effects C-H borylation. Thus, Lewis acid binding to oxygen sites of hydroboranes represents an under-developed route to access reactive borenium-type electrophiles for C-H borylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...