Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(3): 102176, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718828

ABSTRACT

Solubility screening is an essential, routine process that is often labor intensive. Robotic platforms have been developed to automate some aspects of the manual labor involved. However, many of the existing systems rely on traditional analytic techniques such as high-performance liquid chromatography, which require pre-calibration for each compound and can be resource consuming. In addition, automation is not typically end-to-end, requiring user intervention to move vials, establish analytical methods for each compound and interpret the raw data. We developed a closed-loop, flexible robotic system with integrated solid and liquid dosing capabilities that relies on computer vision and iterative feedback to successfully measure caffeine solubility in multiple solvents. After initial researcher input (<2 min), the system ran autonomously, screening five different solvent systems (20-80 min each). The resulting solubility values matched those obtained using traditional manual techniques.

2.
Acc Chem Res ; 54(3): 546-555, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33471522

ABSTRACT

Data science has revolutionized chemical research and continues to break down barriers with new interdisciplinary studies. The introduction of computational models and machine learning (ML) algorithms in combination with automation and traditional experimental techniques has enabled scientific advancement across nearly every discipline of chemistry, from materials discovery, to process optimization, to synthesis planning. However, predictive tools powered by data science are only as good as their data sets and, currently, many of the data sets used to train models suffer from several limitations, including being sparse, limited in scope and requiring human curation. Likewise, computational data faces limitations in terms of accurate modeling of nonideal systems and can suffer from low translation fidelity from simulation to real conditions. The lack of diverse data and the need to be able to test it experimentally reduces both the accuracy and scope of the predictive models derived from data science. This Account contextualizes the need for more complex and diverse experimental data and highlights how the seamless integration of robotics, machine learning, and data-rich monitoring techniques can be used to access it with minimal human labor.We propose three broad categories of data in chemistry: data on fundamental properties, data on reaction outcomes, and data on reaction mechanics. We highlight flexible, automated platforms that can be deployed to acquire and leverage these data. The first platform combines solid- and liquid-dosing modules with computer vision to automate solubility screening, thereby gathering fundamental data that are necessary for almost every experimental design. Using computer vision offers the additional benefit of creating a visual record, which can be referenced and used to further interrogate and gain insight on the data collected. The second platform iteratively tests reaction variables proposed by a ML algorithm in a closed-loop fashion. Experimental data related to reaction outcomes are fed back into the algorithm to drive the discovery and optimization of new materials and chemical processes. The third platform uses automated process analytical technology to gather real-time data related to reaction kinetics. This system allows the researcher to directly interrogate the reaction mechanisms in granular detail to determine exactly how and why a reaction proceeds, thereby enabling reaction optimization and deployment.

3.
Chem Sci ; 12(47): 15473-15490, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-35003576

ABSTRACT

Automation has become an increasingly popular tool for synthetic chemists over the past decade. Recent advances in robotics and computer science have led to the emergence of automated systems that execute common laboratory procedures including parallel synthesis, reaction discovery, reaction optimization, time course studies, and crystallization development. While such systems offer many potential benefits, their implementation is rarely automatic due to the highly specialized nature of synthetic procedures. Each reaction category requires careful execution of a particular sequence of steps, the specifics of which change with different conditions and chemical systems. Careful assessment of these critical procedural requirements and identification of the tools suitable for effective experimental execution are key to developing effective automation workflows. Even then, it is often difficult to get all the components of an automated system integrated and operational. Data flows and specialized equipment present yet another level of challenge. Unfortunately, the pain points and process of implementing automated systems are often not shared or remain buried deep in the SI. This perspective provides an overview of the current state of automation of synthetic chemistry at the benchtop scale with a particular emphasis on core considerations and the ensuing challenges of deploying a system. Importantly, we aim to reframe automation as decidedly not automatic but rather an iterative process that involves a series of careful decisions (both human and computational) and constant adjustment.

4.
Magn Reson Chem ; 58(12): 1234-1248, 2020 12.
Article in English | MEDLINE | ID: mdl-32870524

ABSTRACT

This study focused on fundamental data acquisition parameter selection for a benchtop nuclear magnetic resonance (NMR) system with continuous flow, applicable for reaction monitoring. The effect of flow rate on the mixing behaviors within a flow cell was observed, along with an exponential decay relationship between flow rate and the apparent spin-lattice relaxation time (T1*) of benzaldehyde. We also monitored sensitivity (as determined by signal-to-noise ratios; SNRs) under various flow rates, analyte concentrations, and temperatures of the analyte flask. Results suggest that a maximum SNR can be achieved with low to medium flow rates and higher analyte concentrations. This was consistent with data collected with parameters that promote either slow or fast data acquisition. We further consider the effect of these conditions on the analyte's residence time, T1*, and magnetic field inhomogeneity that is a product of continuous flow. Altogether, our results demonstrate how fundamental acquisition parameters can be manipulated to achieve optimal data acquisition in continuous-flow NMR systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...