Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230660

ABSTRACT

The main objective of this prospective observational study was the characterization of the feasibility and early outcome of image-guided (IG) volumetric modulated arc (VMAT) radiosurgery (SRS) followed by resection for patients with large intraocular melanoma. Our study included consecutive patients with unfavorable-risk melanoma, enrolled in an ophthalmic oncology center. IG-VMAT-SRS was applied by high-resolution 4D image guidance and monitoring. Current stereotactic technique parameters were evaluated for comparison. Side effects and eye function, based on a 5-point CTC assessment score, were quantified. In patients with tumors located more than 0.7-1 mm apart from the optic nerve, partial to complete volume-sparing of the optic nerve head could be achieved. In 95.5% of this subgroup, the vitality of the optic nerve and vision could be preserved by the multimodality-treatment approach (mean follow-up: 18 months (7.5-36 months)). The advanced technology of stereotactic radiotherapy demonstrated the achievability of steep dose gradients around the high-dose volume, with 4D-IG-VMAT dose application. These results enforce IG-VMAT-SRS followed by resection as one of the major therapeutic options for patients with large intraocular melanoma. The combination of 4D-IG high-precision SRS and resection provides an effective treatment for large intraocular melanoma, with few side effects, and enables an eye bulb and even vision preserving modus operandi.

2.
Opt Express ; 28(6): 8108-8131, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32225443

ABSTRACT

In this paper, we focus on the metrological aspects of spectroscopic Mueller ellipsometry-i.e. on the uncertainty estimation of the measurement results. With the help of simulated Mueller matrices, we demonstrate that the commonly used merit functions do not return the correct uncertainty for the measurand under consideration (here shown for the relatively simple case of the geometrical parameter layer thickness for the example system of a SiO2 layer on a Si substrate). We identify the non-optimal treatment of measured and sample- induced depolarization as a reason of this discrepancy. Since depolarization results from sample properties in combination with experimental parameters, it must not be minimized during the parameter fit. Therefore, we propose a new merit function treating this issue differently: It implicitly uses the measured depolarization as a weighting parameter. It is very simple and computationally cheap. It compares for each wavelength the measured Jones matrix elements to Cloude's covariance matrix: ∼∑λ jsim,λ†Hmeas,λ + j sim,λ . Moreover, an extension will be presented which allows us to include the measurement noise into this merit function. With this, reliable statistical uncertainties can be calculated. Except for some pre-processing of the raw data, there is no additional computational cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...