Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Rep ; 14(1): 13034, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844476

ABSTRACT

The risk of developing age-related macular degeneration (AMD) is influenced by genetic background. In 2016, the International AMD Genomics Consortium (IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score (PRS) from these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish (AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study (GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Our discovery set recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary-statistics excluding our study and developed PRSs via clumping/thresholding or LDpred2. In our discovery set, 31/34 loci reported by IAMDGC were AMD-associated (P < 0.05). Of those, all effects were directionally consistent with IAMDGC and 11 loci had a P-value under Bonferroni-corrected threshold (0.05/34 = 0.0015). At a 5 × 10-5 threshold, we discovered four suggestive associations in FAM189A1, IGDCC4, C7orf50, and CNTNAP4. Only the FAM189A1 variant was AMD-associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS + covariates had an AUC of 0.82 (95% CI 0.79-0.85) and performed better than covariates-only model (P = 5.1 × 10-9). Therefore, previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Macular Degeneration , Polymorphism, Single Nucleotide , Humans , Macular Degeneration/genetics , Macular Degeneration/epidemiology , Israel/epidemiology , Female , Male , Aged , Risk Factors , Middle Aged , Case-Control Studies , Aged, 80 and over , Multifactorial Inheritance/genetics , Jews/genetics , Genotype
2.
Elife ; 122023 10 30.
Article in English | MEDLINE | ID: mdl-37903056

ABSTRACT

Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.


Subject(s)
Macular Degeneration , Retinal Degeneration , Humans , Animals , Retinal Degeneration/pathology , Ependymoglial Cells/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Macular Degeneration/metabolism , Cell Death , Disease Models, Animal , Receptors, CCR1/genetics , Receptors, CCR1/metabolism
3.
medRxiv ; 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37732190

ABSTRACT

Purpose: The risk of developing age-related macular degeneration(AMD) is influenced by genetic background. In 2016, International AMD Genomics Consortium(IAMDGC) identified 52 risk variants in 34 loci, and a polygenic risk score(PRS) based on these variants was associated with AMD. The Israeli population has a unique genetic composition: Ashkenazi Jewish(AJ), Jewish non-Ashkenazi, and Arab sub-populations. We aimed to perform a genome-wide association study(GWAS) for AMD in Israel, and to evaluate PRSs for AMD. Methods: For our discovery set, we recruited 403 AMD patients and 256 controls at Hadassah Medical Center. We genotyped all individuals via custom exome chip. We imputed non-typed variants using cosmopolitan and AJ reference panels. We recruited additional 155 cases and 69 controls for validation. To evaluate predictive power of PRSs for AMD, we used IAMDGC summary statistics excluding our study and developed PRSs via either clumping/thresholding or LDpred2. Results: In our discovery set, 31/34 loci previously reported by the IAMDGC were AMD associated with P<0.05. Of those, all effects were directionally consistent with the IAMDGC and 11 loci had a p-value under Bonferroni-corrected threshold(0.05/34=0.0015). At a threshold of 5x10 -5 , we discovered four suggestive associations in FAM189A1 , IGDCC4 , C7orf50 , and CNTNAP4 . However, only the FAM189A1 variant was AMD associated in the replication cohort after Bonferroni-correction. A prediction model including LDpred2-based PRS and other covariates had an AUC of 0.82(95%CI:0.79-0.85) and performed better than a covariates-only model(P=5.1x10 -9 ). Conclusions: Previously reported AMD-associated loci were nominally associated with AMD in Israel. A PRS developed based on a large international study is predictive in Israeli populations.

4.
medRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693462

ABSTRACT

Purpose: Genetic variants in complement genes are associated with age-related macular degeneration (AMD). However, many rare variants have been identified in these genes, but have an unknown significance, and their impact on protein function and structure is still unknown. We set out to address this issue by evaluating the spatial placement and impact on protein structureof these variants by developing an analytical pipeline and applying it to the International AMD Genomics Consortium (IAMDGC) dataset (16,144 AMD cases, 17,832 controls). Methods: The IAMDGC dataset was imputed using the Haplotype Reference Consortium (HRC), leading to an improvement of over 30% more imputed variants, over the original 1000 Genomes imputation. Variants were extracted for the CFH , CFI , CFB , C9 , and C3 genes, and filtered for missense variants in solved protein structures. We evaluated these variants as to their placement in the three-dimensional structure of the protein (i.e. spatial proximity in the protein), as well as AMD association. We applied several pipelines to a) calculate spatial proximity to known AMD variants versus gnomAD variants, b) assess a variant's likelihood of causing protein destabilization via calculation of predicted free energy change (ddG) using Rosetta, and c) whole gene-based testing to test for statistical associations. Gene-based testing using seqMeta was performed using a) all variants b) variants near known AMD variants or c) with a ddG >|2|. Further, we applied a structural kernel adaptation of SKAT testing (POKEMON) to confirm the association of spatial distributions of missense variants to AMD. Finally, we used logistic regression on known AMD variants in CFI to identify variants leading to >50% reduction in protein expression from known AMD patient carriers of CFI variants compared to wild type (as determined by in vitro experiments) to determine the pipeline's robustness in identifying AMD-relevant variants. These results were compared to functional impact scores, ie CADD values > 10, which indicate if a variant may have a large functional impact genomewide, to determine if our metrics have better discriminative power than existing variant assessment methods. Once our pipeline had been validated, we then performed a priori selection of variants using this pipeline methodology, and tested AMD patient cell lines that carried those selected variants from the EUGENDA cohort (n=34). We investigated complement pathway protein expression in vitro , looking at multiple components of the complement factor pathway in patient carriers of bioinformatically identified variants. Results: Multiple variants were found with a ddG>|2| in each complement gene investigated. Gene-based tests using known and novel missense variants identified significant associations of the C3 , C9 , CFB , and CFH genes with AMD risk after controlling for age and sex (P=3.22×10 -5 ;7.58×10 -6 ;2.1×10 -3 ;1.2×10 -31 ). ddG filtering and SKAT-O tests indicate that missense variants that are predicted to destabilize the protein, in both CFI and CFH, are associated with AMD (P=CFH:0.05, CFI:0.01, threshold of 0.05 significance). Our structural kernel approach identified spatial associations for AMD risk within the protein structures for C3, C9, CFB, CFH, and CFI at a nominal p-value of 0.05. Both ddG and CADD scores were predictive of reduced CFI protein expression, with ROC curve analyses indicating ddG is a better predictor (AUCs of 0.76 and 0.69, respectively). A priori in vitro analysis of variants in all complement factor genes indicated that several variants identified via bioinformatics programs PathProx/POKEMON in our pipeline via in vitro experiments caused significant change in complement protein expression (P=0.04) in actual patient carriers of those variants, via ELISA testing of proteins in the complement factor pathway, and were previously unknown to contribute to AMD pathogenesis. Conclusion: We demonstrate for the first time that missense variants in complement genes cluster together spatially and are associated with AMD case/control status. Using this method, we can identify CFI and CFH variants of previously unknown significance that are predicted to destabilize the proteins. These variants, both in and outside spatial clusters, can predict in-vitro tested CFI protein expression changes, and we hypothesize the same is true for CFH . A priori identification of variants that impact gene expression allow for classification for previously classified as VUS. Further investigation is needed to validate the models for additional variants and to be applied to all AMD-associated genes.

5.
medRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693625

ABSTRACT

Purpose: In genome-wide association studies (GWAS), X chromosome (ChrX) variants are often not investigated. Sex-specific effects and ChrX-specific quality control (QC) are needed to examine these effects. Previous analyses identified 52 autosomal variants associated with age-related macular degeneration (AMD) via the International AMD Genomics Consortium (IAMDGC), but did not analyze ChrX. Therefore, our goal was to investigate ChrX variants for association with AMD. Methods: We genotyped 29,629 non-Hispanic White (NHW) individuals (M/F:10,404/18,865; AMD12,087/14723) via a custom chip and imputed after ChrX-specific QC (XWAS 3.0) using the Michigan Imputation Server. Imputation generated 1,221,623 variants on ChrX. Age, informative PCs, and subphenotyeps were covariates for logistic association analyses with Fishers correction. Gene/pathway analyses were performed with VEGAS, GSEASNP, ICSNPathway, DAVID, and mirPath. Results: Logistic association on NHW individuals with sex correction, identified variants in/near the genes SLITRK4, ARHGAP6, FGF13 and DMD associated with AMD (P<1x10 -6 ,Fishers combined-corrected). Via association testing of subphenotypes of choroidal neovascularization and geographic atrophy (GA), variants in DMD associated with GA (P<1x10 -6 , Fishers combined-corrected). Via gene-based analysis with VEGAS, several genes were associated with AMD (P<0.05, both truncated tail strength/truncated product P) including SLITRK4 and BHLHB9 . Pathway analysis using GSEASNP and DAVID showed genes associated with nervous system development (FDR: P:0.02), and blood coagulation (FDR: P:0.03). Variants in the region of a microRNA (miR) were associated with AMD (P<0.05, truncated tail strength/truncated product P). Via DIANA mirPath analysis, downstream targets of miRs show association with brain disorders and fatty acid elongation (P<0.05). A long-non coding RNA on ChrX near the DMD locus was also associated with AMD (P=4x10 -7 ). Epistatic analysis (t-statistic) for a quantitative trait of AMD vs control including covariates found a suggestive association in the XG gene (P=2x10^-5). Conclusions: Analysis of ChrX variants demonstrates association with AMD and these variants may be linked to novel pathways. Further analysis is needed to confirm results and to understand their biological significance and relationship with AMD development in worldwide populations.

6.
Adv Exp Med Biol ; 1415: 157-163, 2023.
Article in English | MEDLINE | ID: mdl-37440029

ABSTRACT

Protein function can be impacted by changes in protein structure stability, but determining which change has impact is complex. Stability can be affected by a large change in the tertiary (3D) structure of the protein or due to free-energy changes caused by single amino acid substitutions. Changes in the DNA sequence can have minor or major impact on protein stability, which can lead to disease. Inherited retinal degenerations are generally caused by single mutations which are mostly located in protein-coding regions, while age-related macular degeneration (AMD) is a complex disorder that can be influenced by some genetic variants impacting proteins involved in the disease, although not all AMD risk variants lead to amino acid changes. Here, we review ways that proteins may be affected, the identification and understanding of these changes, and how to identify causal changes that can be targeted to develop treatments to alleviate retinal degenerative disease.


Subject(s)
Macular Degeneration , Retinal Degeneration , Humans , Retinal Degeneration/genetics , Retina , Macular Degeneration/genetics , Mutation , Proteins/chemistry , Protein Stability
7.
medRxiv ; 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37461624

ABSTRACT

Limited ancestral diversity has impaired our ability to detect risk variants more prevalent in non-European ancestry groups in genome-wide association studies (GWAS). We constructed and analyzed a multi-ancestry GWAS dataset in the Alzheimer's Disease (AD) Genetics Consortium (ADGC) to test for novel shared and ancestry-specific AD susceptibility loci and evaluate underlying genetic architecture in 37,382 non-Hispanic White (NHW), 6,728 African American, 8,899 Hispanic (HIS), and 3,232 East Asian individuals, performing within-ancestry fixed-effects meta-analysis followed by a cross-ancestry random-effects meta-analysis. We identified 13 loci with cross-ancestry associations including known loci at/near CR1 , BIN1 , TREM2 , CD2AP , PTK2B , CLU , SHARPIN , MS4A6A , PICALM , ABCA7 , APOE and two novel loci not previously reported at 11p12 ( LRRC4C ) and 12q24.13 ( LHX5-AS1 ). Reflecting the power of diverse ancestry in GWAS, we observed the SHARPIN locus using 7.1% the sample size of the original discovering single-ancestry GWAS (n=788,989). We additionally identified three GWS ancestry-specific loci at/near ( PTPRK ( P =2.4×10 -8 ) and GRB14 ( P =1.7×10 -8 ) in HIS), and KIAA0825 ( P =2.9×10 -8 in NHW). Pathway analysis implicated multiple amyloid regulation pathways (strongest with P adjusted =1.6×10 -4 ) and the classical complement pathway ( P adjusted =1.3×10 -3 ). Genes at/near our novel loci have known roles in neuronal development ( LRRC4C, LHX5-AS1 , and PTPRK ) and insulin receptor activity regulation ( GRB14 ). These findings provide compelling support for using traditionally-underrepresented populations for gene discovery, even with smaller sample sizes.

10.
Invest Ophthalmol Vis Sci ; 63(9): 8, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35930268

ABSTRACT

Purpose: Genetic variants in the complement factor H gene (CFH) have been consistently implicated in age-related macular degeneration (AMD) risk. However, their functional effects are not fully characterized. We previously identified a rare, AMD-associated variant in CFH (P503A, rs570523689) in 19 Amish individuals, but its functional consequences were not investigated. Methods: We performed genotyping for CFH P503A in 1326 Amish individuals to identify additional risk allele carriers. We examined differences for age at AMD diagnosis between carriers and noncarriers. In blood samples from risk allele carriers and noncarriers, we quantified (i) CFH RNA expression, (ii) CFH protein expression, and (iii) C-reactive protein (CRP) expression. Potential changes to the CFH protein structure were interrogated computationally with Phyre2 and Chimera software programs. Results: We identified 39 additional carriers from Amish communities in Ohio and Indiana. On average, carriers were younger than noncarriers at AMD diagnosis, but this difference was not significant. CFH transcript and protein levels in blood samples from Amish carriers and noncarriers were also not significantly different. CRP levels were also comparable in plasma samples from carriers and noncarriers. Computational protein modeling showed slight changes in the CFH protein conformation that were predicted to alter interactions between the CFH 503 residue and other neighboring residues. Conclusions: In total, we have identified 58 risk allele carriers for CFH P503A in the Ohio and Indiana Amish. Although we did not detect significant differences in age at AMD diagnosis or expression levels of CFH in blood samples from carriers and noncarriers, we observed modest structural changes to the CFH protein through in silico modeling. Based on our functional and computational observations, we hypothesize that CFH P503A may affect CFH binding or function rather than expression, which would require additional research to confirm.


Subject(s)
Complement Factor H , Macular Degeneration , Alleles , Amish/genetics , Complement Factor H/genetics , Complement Factor H/metabolism , Genotype , Heterozygote , Humans , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Macular Degeneration/metabolism , Polymorphism, Single Nucleotide
11.
Mol Vis ; 27: 622-631, 2021.
Article in English | MEDLINE | ID: mdl-34924742

ABSTRACT

Purpose: Macrophages are believed to promote choroidal neovascularization (CNV) in neovascular age-related macular degeneration (nvAMD); however, the underlying proangiogenic mechanism is poorly understood. Therefore, we examined this mechanism in proinflammatory macrophages derived from patients with nvAMD. Methods: Monocytes were isolated from patients with nvAMD and polarized to form an M1 proangiogenic phenotype. We then screened for the role of proangiogenic cytokines expressed by these macrophages, including TNF-α, VEGF, IL-6, IL-8, and IL-1ß, using an ex vivo choroid sprouting assay and an in vivo rodent model of laser-induced CNV (LI-CNV). We also examined the value of inhibiting TNF-α inhibition with respect to reducing the proangiogenic effects of M1 macrophages. Finally, we analyzed the macrophage cytokine expression database to evaluate the feasibility of modulating the expression of TNF-α. Results: The cytokines above are expressed at high levels in patient-derived M1 macrophages. However, among the cytokines tested only TNF-α significantly increased choroid sprouting. Moreover, adoptive intravitreal transfer of M1 macrophages significantly increased LI-CNV, and blocking TNF-α abolished the proangiogenic effects of M1 macrophages in both models. An analysis of cytokine expression revealed that >50% of TNF-α expression is determined by modifiable factors. Conclusions: Blocking TNF-α can reduce the proangiogenic effects of M1 macrophages in nvAMD. Thus, activated macrophages may represent a potential therapeutic target for altering TNF-α expression in nvAMD.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Humans , Macrophages , Mice , Mice, Inbred C57BL , Monocytes
12.
Invest Ophthalmol Vis Sci ; 62(10): 18, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34406330

ABSTRACT

Purpose: Age-related macular degeneration (AMD) is associated with altered gene and protein expression in the retina. We characterize the aqueous humor (AH) proteome in AMD to gain insight into the pathogenesis of the disease and identify potential biomarkers. Methods: AH was collected from age and gender matched neovascular AMD (nvAMD; n = 10) patients and controls (n = 10). AH was pooled to create two samples (nvAMD and control), followed by intensity-based label-free quantification (MS1). Functional and bioinformatic analysis were then performed. A validation set (20 controls, 15 atrophic AMD and 15 nvAMD) was tested via multiplex ELISA for nine differentially expressed proteins according to the MS1 findings. Results: MS1 identified 674 proteins in the AH. 239 proteins were upregulated in nvAMD (nvAMD/control > 2, peptide tags (PT) > 2), and 86 proteins were downregulated (nvAMD/control < 0.5, PT > 2). Functional analysis of proteins upregulated in AMD demonstrated enrichment for platelet degranulation (enrichment score (ES):28.1), negative regulation of endopeptidase activity (ES:18.8), cellular protein metabolic process (ES:11.8), epidermal growth factor-like domain (ES:10.3), sushi/SCR/CCP (ES:10.1), and complement/coagulation cascades (ES:9.2). AMD protein clusters were upregulated for 3/6 (χ2 < 0.05 compared to randomization). Validation via ELISA confirmed MS1 in 2/9 proteins (Clusterin and Serpin A4, P < 0.05), while 3/9 showed differential expression between aAMD and nvAMD (Clusterin, Serpin A4, and TF P < 0.05). Receiver operating characteristic curve calculation identified the area under the curve of 0.82 for clusterin as a biomarker for distinction of AMD. Conclusions: AH proteomics in AMD patients identified several proteins and functional clusters with altered expression. Further research should confirm if these proteins may serve as biomarkers or therapeutic target for the disease.


Subject(s)
Aqueous Humor/metabolism , Eye Proteins/metabolism , Proteome/metabolism , Wet Macular Degeneration/metabolism , Aged , Aged, 80 and over , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , ROC Curve , Visual Acuity
13.
Eur J Ophthalmol ; 31(3): 1094-1100, 2021 May.
Article in English | MEDLINE | ID: mdl-32363931

ABSTRACT

PURPOSE: Visual outcome in patients with neovascular age-related macular degeneration is variable. We aimed to evaluate for association between socioeconomic status visual acuity in neovascular age-related macular degeneration. METHODS: A retrospective single-center study of a consecutive group of neovascular age-related macular degeneration patients was performed. Socioeconomic status was determined for each patient based on the 2008 Israeli census. Medical information was extracted from medical records and included visual acuity and optical coherence tomography parameters. Associations between socioeconomic status and clinical outcomes were analyzed. RESULTS: A total of 233 patients were included in the analysis. A correlation was found between low baseline visual acuity of the first eye diagnosed with neovascular age-related macular degeneration and low socioeconomic status (r = -0.13, p = 0.049; n = 233). The difference between the visual acuity of the lowest and the highest socioeconomic status categories at baseline was approximately 3 ETDRS lines (p = 0.048). Socioeconomic status and baseline visual acuity of the second eye of the same individual with neovascular age-related macular degeneration were not correlated (r = -0.05, p = 0.95). Socioeconomic status was not associated with the number of anti-vascular endothelial growth factor injections of the first or second eye, or the visual acuity outcome of the first or second eye after 1 year of therapy (p = 0.421, p = 0.9, respectively). Central subfield thickness of the first eye at presentation as measured by spectral-domain optical coherence tomography was associated with socioeconomic status (r = -0.31 p = 0.001). CONCLUSION: Individuals of lower socioeconomic status presented at more advanced stage of the disease when developing neovascular age-related macular degeneration in the first eye but not in the second eye. The research underscores the importance of improving referral patterns and awareness for the lowest socioeconomic status classes.


Subject(s)
Macular Degeneration , Wet Macular Degeneration , Angiogenesis Inhibitors/therapeutic use , Humans , Intravitreal Injections , Macular Degeneration/drug therapy , Retrospective Studies , Social Class , Tomography, Optical Coherence , Treatment Outcome , Vascular Endothelial Growth Factor A , Wet Macular Degeneration/diagnosis , Wet Macular Degeneration/drug therapy
14.
BMC Med Genomics ; 13(1): 95, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32631374

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness worldwide. Multiple estimates for AMD heritability (h2) exist; however, a substantial proportion of h2 is not attributable to known genomic loci. The International AMD Genomics Consortium (IAMDGC) gathered the largest dataset of advanced AMD (ADV) cases and controls available and identified 34 loci containing 52 independent risk variants defining known AMD h2. To better define AMD heterogeneity, we used Pathway Analysis by Randomization Incorporating Structure (PARIS) on the IAMDGC data and identified 8 statistical driver genes (SDGs), including 2 novel SDGs not discovered by the IAMDGC. We chose to further investigate these pathway-based risk genes and determine their contribution to ADV h2, as well as the differential ADV subtype h2. METHODS: We performed genomic-relatedness-based restricted maximum-likelihood (GREML) analyses on ADV, geographic atrophy (GA), and choroidal neovascularization (CNV) subtypes to investigate the h2 of genotyped variants on the full DNA array chip, 34 risk loci (n = 2758 common variants), 52 variants from the IAMDGC 2016 GWAS, and the 8 SDGs, specifically the novel 2 SDGs, PPARA and PLCG2. RESULTS: Via GREML, full chip h2 was 44.05% for ADV, 46.37% for GA, and 62.03% for CNV. The lead 52 variants' h2 (ADV: 14.52%, GA: 8.02%, CNV: 13.62%) and 34 loci h2 (ADV: 13.73%, GA: 8.81%, CNV: 12.89%) indicate that known variants contribute ~ 14% to ADV h2. SDG variants account for a small percentage of ADV, GA, and CNV heritability, but estimates based on the combination of SDGs and the 34 known loci are similar to those calculated for known loci alone. We identified modest epistatic interactions among variants in the 2 SDGs and the 52 IAMDGC variants, including modest interactions between variants in PPARA and PLCG2. CONCLUSIONS: Pathway analyses, which leverage biological relationships among genes in a pathway, may be useful in identifying additional loci that contribute to the heritability of complex disorders in a non-additive manner. Heritability analyses of these loci, especially amongst disease subtypes, may provide clues to the importance of specific genes to the genetic architecture of AMD.


Subject(s)
Genetic Markers , Genetic Predisposition to Disease , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Software , Female , Genome-Wide Association Study , Humans , Macular Degeneration/pathology , Male , Middle Aged , Risk Factors
15.
Invest Ophthalmol Vis Sci ; 61(2): 48, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32106291

ABSTRACT

Purpose: Anti-vascular endothelial growth factor (VEGF) therapy for neovascular AMD (nvAMD) obtains a variable outcome. We performed a genome-wide association study for anti-VEGF treatment response in nvAMD to identify variants potentially underlying such a variable outcome. Methods: Israeli patients with nvAMD who underwent anti-VEGF treatment (n = 187) were genotyped on a whole exome chip containing approximately 500,000 variants. Genotyping was correlated with delta visual acuity (deltaVA) between baseline and after three injections of anti-VEGF. Top principal components, age, and baseline VA were included in the analysis. Two lead associated variants were genotyped in an independent validation set of patients with nvAMD (n = 108). Results: Linear regression analysis on 5,353,842 variants revealed five exonic variants with an association P value of less than 6 × 10-5. The top variant in the gene VWA3A (P = 1.77 × 10-6) was tested in the validation cohort. The minor allele of the VWA3A variant was associated with worse response to treatment (P = 0.02). The average deltaVA of discovery plus validation was -0.214 logMAR (≈ a gain of 10.7 Early Treatment Diabetic Retinopathy Study letters) for homozygote for the major allele, 0.172 logMAR for heterozygotes (≈ a loss of 8.6 Early Treatment Diabetic Retinopathy Study letters), and 0.21 logMAR for homozygote for the minor allele (≈ a loss of 10.5 Early Treatment Diabetic Retinopathy Study letters). Minor allele carriers had a higher frequency of macular hemorrhage at baseline. Conclusions: An VWA3A gene variant was associated with worse response to anti-VEGF treatment in Israeli patients with nvAMD. The VWA3A protein is a precursor of the multimeric von Willebrand factor which is involved in blood coagulation, a system previously associated with nvAMD.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization , Protein Precursors/genetics , Wet Macular Degeneration , Aged , Aged, 80 and over , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/genetics , Female , Humans , Israel , Male , Middle Aged , Regression Analysis , Visual Acuity , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/genetics , von Willebrand Factor/genetics
16.
Mol Vis ; 25: 479-488, 2019.
Article in English | MEDLINE | ID: mdl-31588172

ABSTRACT

Purpose: Oxidative stress and macrophages have been implicated in the pathogenesis of atrophic and neovascular age-related macular degeneration (aAMD and nvAMD). It is unclear whether oxidative injury mediates macrophage involvement in AMD. We aimed to investigate the effect of antioxidant treatments on human monocyte-derived macrophages (hMDMs) from patients with AMD in models for the disease. Methods: Four antioxidant treatments were evaluated (G1: lutein + zeaxanthin, G2: lutein + zeaxanthin and zinc, G3: lutein + zeaxanthin, zinc, Lyc-O-Mato, and carnosic acid, G4: lutein + zeaxanthin, carnosic acid, and beta-carotene, G5: olive oil as vehicle control). The compounds were added to the culture medium of M1 (interferon-gamma [IFN-Ɣ] and lipopolysaccharide [LPS]) and M2a (interleukin-13 [IL-13] and IL-4) hMDMs from patients with AMD (n=7 and n=8, respectively). Mouse choroidal tissue was cultured with supernatants from treated M1/M2a hMDMs, to evaluate the effect of treatments on the angiogenic properties of macrophages with choroidal sprouting assay (CSA). Mouse retinal explants were cultured with treated hMDMs for 18 h, and evaluated for photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) labeling. Adult BALB/c mice (n=8) were exposed to 8,000 lux bright light for 3 h, and treated orally with antioxidant supplements for 7 days that preceded light injury and following it. Oxidative stress was assessed using an anti-4 hydroxynonenal (4-HNE) antibody. Retinal function and the thickness of the outer nuclear layer were evaluated with electroretinography (ERG) and histological analysis, respectively. Results: The G3 treatment reduced M2a hMDMs-associated sprouting in the CSA compared to the untreated group (n=7, -1.52-fold, p=0.05). Conversely, the G2 treatment was associated with an increased neurotoxic effect of M2a hMDMs in the retinal explant assay compared to the control group (n=7, 1.37-fold, p=0.047), as well as compared to the G3 treatment group (1.46-fold, p=0.01). The G4 treatment was also associated with increased cytotoxicity compared to the control group (1.48-fold, p=0.004), and compared to the G3 treatment group (1.58-fold, p=0.001). In the in vivo light damage model, mice (n=8) supplemented with G2, G3, and G4 had decreased levels of oxidative injury assessed using 4-HNE labeling (-2.32-fold, -2.17-fold, and -2.18-fold, respectively, p<0.05 for all comparisons). None of the treatments were associated with reduced photoreceptor cell loss, as shown with histology and ERG. Conclusions: Antioxidant treatment modulates M2a hMDMs at the functional level. In particular, we found that the G3 combination has a beneficial effect on M2a macrophages in reducing their angiogenic and neurotoxic capacity ex vivo. In addition, antioxidant treatments considerably reduced the oxidative stress level in light-damaged retinas. Further research is required to assess whether such therapies may curb macrophage-driven photoreceptor loss and neovascularization in AMD.


Subject(s)
Antioxidants/therapeutic use , Macrophages/pathology , Retinal Degeneration/drug therapy , Aged , Aged, 80 and over , Animals , Antioxidants/pharmacology , Female , Humans , Macrophages/drug effects , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Neurotoxins/toxicity , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Retina/drug effects , Retina/pathology
17.
Invest Ophthalmol Vis Sci ; 60(12): 4041-4051, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31560769

ABSTRACT

Purpose: Age-related macular degeneration (AMD) is the worldwide leading cause of blindness among the elderly. Although genome-wide association studies (GWAS) have identified AMD risk variants, their roles in disease etiology are not well-characterized, and they only explain a portion of AMD heritability. Methods: We performed pathway analyses using summary statistics from the International AMD Genomics Consortium's 2016 GWAS and multiple pathway databases to identify biological pathways wherein genetic association signals for AMD may be aggregating. We determined which genes contributed most to significant pathway signals across the databases. We characterized these genes by constructing protein-protein interaction networks and performing motif analysis. Results: We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B) "drive" the statistical signals observed across pathways curated in the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases. We further refined our definition of statistical driver gene to identify PLCG2 as a candidate gene for AMD due to its significant gene-level signals (P < 0.0001) across KEGG, Reactome, GO, and NetPath pathways. Conclusions: We performed pathway analyses on the largest available collection of advanced AMD cases and controls in the world. Eight genes strongly contributed to significant pathways from the three larger databases, and one gene (PLCG2) was central to significant pathways from all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in silico genetic and biological pathway data to investigate the genetic architecture of AMD.


Subject(s)
Genome-Wide Association Study , Macular Degeneration/genetics , Phospholipase C gamma/genetics , Aged , Case-Control Studies , Databases, Factual , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs
18.
J Immunol Res ; 2019: 8535273, 2019.
Article in English | MEDLINE | ID: mdl-31467935

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD), the most common cause of blindness in the developed world, usually affects individuals older than 60 years of age. The majority of visual loss in this disease is attributable to the development of choroidal neovascularization (CNV). Mononuclear phagocytes, including monocytes and their tissue descendants, macrophages, have long been implicated in the pathogenesis of neovascular AMD (nvAMD). Current therapies for nvAMD are based on targeting vascular endothelial growth factor (VEGF). This study is aimed at assessing if perturbation of chemokine signaling and mononuclear cell recruitment may serve as novel complementary therapeutic targets for nvAMD. METHODS: A promiscuous chemokine antagonist (BKT130), aflibercept treatment, or combined BKT130+aflibercept treatment was tested in an in vivo laser-induced model of choroidal neovascularization (LI-CNV) and in an ex vivo choroidal sprouting assay (CSA). Quantification of CD11b+ cell in the CNV area was performed, and mRNA levels of genes implicated in CNV growth were measured in the retina and RPE-choroid. RESULTS: BKT130 reduced the CNV area and recruitment of CD11b+ cells by 30-35%. No effect of BKT130 on macrophages' proangiogenic phenotype was demonstrated ex vivo, but a lower VEGFA and CCR2 expression was found in the RPE-choroid and a lower expression of TNFα and NOS1 was found in both RPE-choroid and retinal tissues in the LI-CNV model under treatment with BKT130. CONCLUSIONS: Targeting monocyte recruitment via perturbation of chemokine signaling can reduce the size of experimental CNV and should be evaluated as a potential novel therapeutic modality for nvAMD.


Subject(s)
Chemokines/antagonists & inhibitors , Choroidal Neovascularization/drug therapy , Monocytes/drug effects , Aged , Aged, 80 and over , Animals , CD11b Antigen/metabolism , Cell Movement/drug effects , Chemokines/metabolism , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Female , Humans , Lasers , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Monocytes/metabolism , Nitric Oxide Synthase Type I/metabolism , Rats , Rats, Long-Evans , Receptors, CCR2/metabolism , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Retina/metabolism , Retina/pathology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
19.
JAMA Ophthalmol ; 136(8): 875-884, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29852030

ABSTRACT

Importance: Visual acuity (VA) outcomes differ considerably among patients with neovascular age-related macular degeneration (nAMD) treated with anti-vascular endothelial growth factor (VEGF) drugs. Identification of pharmacogenetic associations may help clinicians understand the mechanisms underlying this variability as well as pave the way for personalized treatment in nAMD. Objective: To identify genetic factors associated with variability in the response to anti-VEGF therapy for patients with nAMD. Design, Setting, and Participants: In this multicenter genome-wide association study, 678 patients with nAMD with genome-wide genotyping data were included in the discovery phase; 1380 additional patients with nAMD were genotyped for selected common variants in the replication phase. All participants received 3 monthly injections of bevacizumab or ranibizumab. Clinical data were evaluated for inclusion/exclusion criteria from October 2014 to October 2015, followed by data analysis from October 2015 to February 2016. For replication cohort genotyping, clinical data collection and analysis (including meta-analysis) was performed from March 2016 to April 2017. Main Outcomes and Measures: Change in VA after the loading dose of 3 monthly anti-VEGF injections compared with baseline. Results: Of the 2058 included patients, 1210 (58.8%) were women, and the mean (SD) age across all cohorts was 78 (7.4) years. Patients included in the discovery cohort and most of the patients in the replication cohorts were of European descent. The mean (SD) baseline VA was 51.3 (20.3) Early Treatment Diabetic Retinopathy Study (ETDRS) score letters, and the mean (SD) change in VA after the loading dose of 3 monthly injections was a gain of 5.1 (13.9) ETDRS score letters (ie, 1-line gain). Genome-wide single-variant analyses of common variants revealed 5 independent loci that reached a P value less than 10 × 10-5. After replication and meta-analysis of the lead variants, rs12138564 located in the CCT3 gene remained nominally associated with a better treatment outcome (ETDRS letter gain, 1.7; ß, 0.034; SE, 0.008; P = 1.38 × 10-5). Genome-wide gene-based optimal unified sequence kernel association test of rare variants showed genome-wide significant associations for the C10orf88 (P = 4.22 × 10-7) and UNC93B1 (P = 6.09 × 10-7) genes, in both cases leading to a worse treatment outcome. Patients carrying rare variants in the C10orf88 and UNC93B1 genes lost a mean (SD) VA of 30.6 (17.4) ETDRS score letters (ie, loss of 6.09 lines) and 26.5 (13.8) ETDRS score letters (ie, loss of 5.29 lines), respectively, after 3 months of anti-VEGF treatment. Conclusions and Relevance: We propose that there is a limited contribution of common genetic variants to variability in nAMD treatment response. Our results suggest that rare protein-altering variants in the C10orf88 and UNC93B1 genes are associated with a worse response to anti-VEGF therapy in patients with nAMD, but these results require further validation in other cohorts.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/genetics , Chromosomes, Human, Pair 10/genetics , Membrane Transport Proteins/genetics , Open Reading Frames/genetics , Polymorphism, Single Nucleotide , Wet Macular Degeneration/genetics , Aged , Bevacizumab/therapeutic use , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/physiopathology , Female , Genetic Variation , Genome-Wide Association Study , Genotyping Techniques , Humans , Intravitreal Injections , Male , Middle Aged , Pharmacogenetics , Ranibizumab/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Visual Acuity/physiology , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/physiopathology
20.
Mol Vis ; 23: 889-899, 2017.
Article in English | MEDLINE | ID: mdl-29259394

ABSTRACT

Purpose: Oral vitamin and mineral supplements reduce the risk of visual loss in age-related macular degeneration (AMD). However, the pathways that mediate this beneficial effect are poorly understood. Macrophages may exert oxidative, inflammatory, and angiogenic effects in the context of AMD. We aim to assess if oral supplements can modulate the macrophage phenotype in this disease. Methods: Monocytes were isolated from patients with neovascular AMD (nvAMD), cultured, matured to macrophages, and polarized to classical [M1 (stimulated by IFNγ and lipopolysaccharide (LPS))] and alternative [M2 (stimulated with IL-4 and IL-13)] phenotypes. Combinations of antioxidants including lutein+zeaxanthin (1 µM; 0.2 µM), zinc (10 µM), carnosic acid (2 µM), beta-carotene (2 µM), and standardized tomato extract containing lycopene and other tomato phytonutrients were added to the culture media. Levels of anti-inflammatory, antioxidant, and pro-angiogenic gene and protein expression were then evaluated. Results: Combinations of lutein and carnosic acid with zinc and standardized tomato extract or with beta-carotene yielded an antioxidative, anti-inflammatory, and antiangiogenic effect in M1 and M2 macrophages. These effects manifested in the upregulation of antioxidative genes (HMOX1, SOD1) and the downregulation of pro-angiogenic genes and pro-inflammatory genes (SDF-1, TNF-alpha, IL-6, MCP-1). Lutein monotherapy or a combination of lutein and zinc had less effect on the expression of these genes. Conclusions: Combinations of supplements can modify the expression of genes and proteins that may be relevant for the involvement of macrophages in the pathogenesis of AMD. Further studies are required to evaluate if the modulation of the macrophage phenotype partially accounts for the beneficial effect of oral supplements in AMD and if modification of the AREDS formula can improve its effect on macrophages.


Subject(s)
Antioxidants/administration & dosage , Cytokines/genetics , Dietary Supplements , Gene Expression Regulation/physiology , Macrophages/metabolism , Oxidoreductases/genetics , Wet Macular Degeneration/genetics , Administration, Oral , Aged , Aged, 80 and over , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophage Activation , Male , Oxidoreductases/metabolism , Phenotype , Real-Time Polymerase Chain Reaction , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Wet Macular Degeneration/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...