Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005334

ABSTRACT

Age is the greatest risk factor for Alzheimer's disease (AD) as well as for other disorders that increase the risk of AD such as diabetes and obesity. There is growing interest in determining if interventions that promote metabolic health can prevent or delay AD. Acarbose is an anti-diabetic drug that not only improves glucose homeostasis, but also extends the lifespan of wild-type mice. Here, we test the hypothesis that acarbose will not only preserve metabolic health, but also slow or prevent AD pathology and cognitive deficits in 3xTg mice, a model of AD, fed either a Control diet or a high-fat, high-sucrose Western diet (WD). We find that acarbose decreases the body weight and adiposity of WD-fed 3xTg mice, increasing energy expenditure while also stimulating food consumption, and improves glycemic control. Both male and female WD-fed 3xTg mice have worsened cognitive deficits than Control-fed mice, and these deficits are ameliorated by acarbose treatment. Molecular and histological analysis of tau and amyloid pathology identified sex-specific effects of acarbose which are uncoupled from the dramatic improvements in cognition, suggesting that the benefits of acarbose on AD are largely driven by improved metabolic health. In conclusion, our results suggest that acarbose may be a promising intervention to prevent, delay, or even treat AD, especially in individuals consuming a Western diet.

2.
Nat Commun ; 15(1): 5217, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890307

ABSTRACT

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.


Subject(s)
Alzheimer Disease , Brain , Diet, Protein-Restricted , Disease Models, Animal , Disease Progression , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Female , Male , Mice , Brain/metabolism , Brain/pathology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy , Glucose Intolerance/metabolism , Sphingolipids/metabolism , Cognition , Mice, Inbred C57BL
3.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790423

ABSTRACT

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...