Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 55(1): 165-79, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25474400

ABSTRACT

Determination of structural similarities between protein binding pockets is an important challenge in in silico drug design. It can help to understand selectivity considerations, predict unexpected ligand cross-reactivity, and support the putative annotation of function to orphan proteins. To this end, Cavbase was developed as a tool for the automated detection, storage, and classification of putative protein binding sites. In this context, binding sites are characterized as sets of pseudocenters, which denote surface-exposed physicochemical properties, and can be used to enable mutual binding site comparisons. However, these comparisons tend to be computationally very demanding and often lead to very slow computations of the similarity measures. In this study, we propose RAPMAD (RApid Pocket MAtching using Distances), a new evaluation formalism for Cavbase entries that allows for ultrafast similarity comparisons. Protein binding sites are represented by sets of distance histograms that are both generated and compared with linear complexity. Attaining a speed of more than 20 000 comparisons per second, screenings across large data sets and even entire databases become easily feasible. We demonstrate the discriminative power and the short runtime by performing several classification and retrieval experiments. RAPMAD attains better success rates than the comparison formalism originally implemented into Cavbase or several alternative approaches developed in recent time, while requiring only a fraction of their runtime. The pratical use of our method is finally proven by a successful prospective virtual screening study that aims for the identification of novel inhibitors of the NMDA receptor.


Subject(s)
Computational Biology/methods , Databases, Protein , Proteins/chemistry , Proteins/metabolism , Adenosine Triphosphate/metabolism , Algorithms , Binding Sites , Ligands , NAD/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Protein Binding , ROC Curve , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Reproducibility of Results
3.
Bioorg Med Chem Lett ; 22(18): 5876-84, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22902656

ABSTRACT

The identification of highly potent and orally active triazines for the inhibition of PDE10A is reported. The new analogs exhibit low-nanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired drug-like properties. Employing structure-based drug design approaches, we investigated the selectivity of PDE10A inhibitors against other known PDE isoforms, by methodically exploring the various sub-regions of the PDE10A ligand binding pocket. A systematic assessment of the ADME and pharmacokinetic properties of the newly synthesized compounds has led to the design of drug-like candidates with good brain permeability and desirable drug kinetics (t(1/2), bioavailability, clearance). Compound 66 was highly potent for PDE10A (IC(50)=1.4 nM), demonstrated high selectivity (>200×) for the other PDEs, and was efficacious in animal models of psychoses; reversal of MK-801 induced hyperactivity (MED=0.1mg/kg) and conditioned avoidance responding (CAR; ID(50)=0.2 mg/kg).


Subject(s)
Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Triazines/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Dizocilpine Maleate/antagonists & inhibitors , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Humans , Hyperkinesis/chemically induced , Hyperkinesis/drug therapy , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/chemistry , Rats , Structure-Activity Relationship , Triazines/administration & dosage , Triazines/chemistry
4.
J Med Chem ; 54(21): 7621-38, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21988093

ABSTRACT

The identification of highly potent and orally active phenylpyrazines for the inhibition of PDE10A is reported. The new analogues exhibit subnanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired druglike properties. Employing structure-based drug design approaches, we methodically explored two key regions of the binding pocket of the PDE10A enzyme to alter the planarity of the parent compound 1 and optimize its affinity for PDE10A. Bulky substituents at the C9 position led to elimination of the mutagenicity of 1, while a crucial hydrogen bond interaction with Glu716 markedly enhanced its potency and selectivity. A systematic assessment of the ADME and PK properties of the new analogues led to druglike development candidates. One of the more potent compounds, 96, displayed an IC(50) for PDE10A of 0.7 nM and was active in predictive antipsychotic animal models.


Subject(s)
Antipsychotic Agents/chemical synthesis , Phosphodiesterase Inhibitors/chemical synthesis , Phosphoric Diester Hydrolases/metabolism , Pyrazines/chemical synthesis , Administration, Oral , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/pharmacology , Avoidance Learning/drug effects , Binding Sites , Crystallography, X-Ray , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Dogs , Female , Humans , Hydrolysis , Hyperkinesis/drug therapy , In Vitro Techniques , Isoenzymes/chemistry , Isoenzymes/metabolism , Ligands , Male , Mice , Microsomes/metabolism , Models, Molecular , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/chemistry , Protein Conformation , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Recombinant Proteins/chemistry , Stereoisomerism , Stereotyped Behavior/drug effects , Structure-Activity Relationship
6.
J Am Chem Soc ; 133(21): 8090-3, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21545135

ABSTRACT

Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA-fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA-PPII-fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA-PPII-fluorophores in super-resolution microscopy.


Subject(s)
Fluorescent Dyes/chemical synthesis , Microscopy, Fluorescence/methods , Receptors, AMPA/chemistry , Animals , Hippocampus/chemistry , Microscopy, Confocal/methods , Neurons/chemistry , Rats
7.
Nano Lett ; 10(12): 5080-7, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-20979410

ABSTRACT

We introduce a nanofabricated silicon chip for massively multiplexed analysis of membrane channels and transporters in suspended lipid membranes that does not require any surface modification or organic solvent. Transport processes through single membrane complexes are monitored by fluorescence. The chip consists of an array of well-defined nanopores, addressing an individual pyramidal back-reflecting 30-fL compartment. The setup allows simultaneous analyses of ∼1,000 single transmembrane events in one field of view, observing translocation kinetics of transmembrane complexes.

8.
ACS Nano ; 4(11): 6607-16, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-20958083

ABSTRACT

Nanopatterning of biomolecules on functionalized surfaces offers an excellent route for ultrasensitive protein immobilization, for interaction measurements, and for the fabrication of devices such as protein nanoarrays. An improved understanding of the physics and chemistry underlying the device properties and the recognition process is necessary for performance optimization. This is especially important for the recognition and immobilization of intrinsically disordered proteins (IDPs), like the prion protein (PrP), a partial IDP, whose folding and stability may be influenced by local environment and confinement. Atomic force microscopy allows for both highly controllable nanolithography and for sensitive and accurate direct detection, via precise topographic measurements on ultraflat surfaces, of protein interactions in a liquid environment, thus different environmental parameters affecting the biorecognition phenomenon can be investigated in situ. Using nanografting, a tip-induced lithographic technique, and an affinity immobilization strategy based on two different histidine tagged antibodies, with high nM affinity for two different regions of PrP, we successfully demonstrated the immobilization of recombinant mouse PrP onto nanostructured surfaces, in two different orientations. Clear discrimination of the two molecular orientations was shown by differential height (i.e., topographic) measurements, allowing for the estimation of binding parameters and the full characterization of the nanoscale biorecognition process. Our work opens the way to several high sensitivity diagnostic applications and, by controlling PrP orientation, allows for the investigation of unconventional interactions with partially folded proteins, and may serve as a platform for protein misfolding and refolding studies on PrP and other thermodynamically unstable, fibril forming, proteins.


Subject(s)
Immobilized Proteins/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Prions/chemistry , Alkanes/chemistry , Animals , Antibodies/immunology , Gold/chemistry , Immobilized Proteins/immunology , Mice , Models, Molecular , Nitrilotriacetic Acid/chemistry , Polyethylene Glycols/chemistry , Prions/immunology , Protein Conformation , Sulfhydryl Compounds/chemistry , Surface Properties
9.
J Med Chem ; 53(11): 4399-411, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20450197

ABSTRACT

Novel imidazo[1,5-a]pyrido[3,2-e]pyrazines have been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. For in vitro characterization, inhibition of PDE10A mediated cAMP hydrolysis was used and a QSAR model was established to analyze substitution effects. The outcome of this analysis was complemented by the crystal structure of PDE10A in complex with compound 49. Qualitatively new interactions between inhibitor and binding site were found, contrasting with previously published crystal structures of papaverine-like inhibitors. In accordance with the known antipsychotic potential of PDE10A inhibitors, MK-801 induced stereotypy and hyperactivity in rats were reversed by selected compounds. Thus, a promising compound class has been identified for the treatment of schizophrenia that could circumvent side effects connected with current therapies.


Subject(s)
Drug Discovery/methods , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Pyrazines/chemistry , Pyrazines/pharmacology , Animals , Female , Humans , Models, Molecular , Phosphoric Diester Hydrolases/chemistry , Protein Conformation , Quantitative Structure-Activity Relationship , Rats , Rats, Wistar
10.
Proc Natl Acad Sci U S A ; 107(14): 6146-51, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20200313

ABSTRACT

Chemical biology aims for a perfect control of protein complexes in time and space by their site-specific labeling, manipulation, and structured organization. Here we developed a self-inactivated, lock-and-key recognition element whose binding to His-tagged proteins can be triggered by light from zero to nanomolar affinity. Activation is achieved by photocleavage of a tethered intramolecular ligand arming a multivalent chelator head for high-affinity protein interaction. We demonstrate site-specific, stable, and reversible binding in solution as well as at interfaces controlled by light with high temporal and spatial resolution. Multiplexed organization of protein complexes is realized by an iterative in situ writing and binding process via laser scanning microscopy. This light-triggered molecular recognition should allow for a spatiotemporal control of protein-protein interactions and cellular processes by light-triggered protein clustering.


Subject(s)
Light , Periplasmic Binding Proteins/chemistry , Receptors, LDL/chemistry , Receptors, Virus/chemistry , Chelating Agents/chemistry , Chromatography, Gel , Histidine/chemistry , Maltose-Binding Proteins , Molecular Structure , Nitrilotriacetic Acid/chemistry , Oligopeptides/chemistry , Periplasmic Binding Proteins/isolation & purification , Protein Binding , Protein Conformation , Receptors, LDL/metabolism , Receptors, Virus/metabolism , Rhinovirus/chemistry , Rhinovirus/metabolism , Rhinovirus/radiation effects , Virion/metabolism , Virion/radiation effects
11.
Biointerphases ; 5(4): 131-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21219034

ABSTRACT

In medical technologies concerning the surface immobilization of proteins in a defined orientation, maintaining their activity is a critical aspect. Therefore, in this study, the authors have investigated the activity of an elongated protein attached to a self-assembled monolayer supported streptavidin layer for different relative orientations of the protein with regard to the surface. Several mutants of this protein, human guanylate-binding protein 1 (hGBP1) showing GTPase catalytic activity, have been furnished with either one or two biotin anchors. Various independent methods that are based on different biophysical properties such as surface plasmon resonance, atomic force microscopy, and quartz crystal microbalance have been used to determine the orientation of the hGBP1 variants after anchoring them via a streptavidin-linker to a biotinylated surface. The activity of guanosine-triphosphate hydrolysis of hGBP1 monomers bound on the surface is found to depend on their orientation relative to the substrate, relating to their ability to form dimers with other neighboring anchored mutants; the maximum activity is lower than that observed in solutions, as might be expected from diffusion limitations at the solid/liquid interface on the one hand and prevention from homodimer formation due to immobilization on the other hand.


Subject(s)
GTP-Binding Proteins/chemistry , Protein Interaction Mapping/methods , Adsorption , Biotin/chemistry , Biotin/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Humans , Kinetics , Microscopy, Atomic Force , Models, Molecular , Nanotechnology , Quartz Crystal Microbalance Techniques , Streptavidin/chemistry , Streptavidin/metabolism , Surface Plasmon Resonance , Unilamellar Liposomes
12.
J Struct Biol ; 168(1): 217-22, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19232541

ABSTRACT

Crystalline bacterial cell surface layers (S-layers) show the ability to recrystallize into highly regular pattern on solid supports. In this study, the genetically modified S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177, carrying a hexa-histidine tag (His(6)-tag) at the C-terminus, was used to generate functionalized two-dimensional nanoarrays on a silicon surface. Atomic force microscopy (AFM) was applied to explore the topography and the functionality of the fused His(6)-tags. The accessibility of the His(6)-tags was demonstrated by in-situ anti-His-tag antibody binding to the functional S-layer array. The metal binding properties of the His(6)-tag was investigated by single molecule force microscopy. For this purpose, newly developed tris-NTA was tethered to the AFM tips via a flexible polyethylene glycol (PEG) linker. The functionalized tips showed specific interactions with S-layer containing His(6)-tags in the presence of nickel ions. Thus the His(6)-tag is located at the outer surface of the S-layer and can be used for stable but reversible attachment of functional tris-NTA derivatives.


Subject(s)
Membrane Glycoproteins/chemistry , Nanotechnology/methods , Bacterial Proteins/chemistry , Binding Sites , Microscopy, Atomic Force
13.
J Am Chem Soc ; 130(45): 14952-3, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-18928285

ABSTRACT

In this paper we present a modular approach for the fabrication of surfaces to characterize protein-protein interactions. The approach is based on azido peptides with an optimized sequence which are then thiol-functionalized using an alkynyl thiol and "click" chemistry. From these peptide thiols we fabricated SAMs on gold to evaluate the protein resistance, using surface plasmon resonance spectroscopy, toward streptavidin, bovin serum albumin (BSA), and fibronectin.


Subject(s)
Fibronectins/chemistry , Peptides/chemistry , Serum Albumin, Bovine/chemistry , Streptavidin/chemistry , Adsorption , Amino Acid Sequence , Azides/chemistry , Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Peptides/chemical synthesis , Sulfhydryl Compounds/chemistry
14.
Rev Sci Instrum ; 79(2 Pt 1): 023110, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315286

ABSTRACT

The analytical performance of surface plasmon resonance imaging with charge coupled device detection can be improved significantly by splitting a macroscopic sensing surface into multiple microscopic neighboring sensing and referencing subareas. It is shown that such a multiple referencing reduces intensity fluctuations across the total sensing area and, therefore, improves the signal/noise (S/N) ratio proportional to the splitting factor. The approach is demonstrated by detection of biotin binding to a monolayer of streptavidin. An effective variation of the reflected intensity of about 10(-4), which corresponds to the refraction index variation of 3x10(-6), was detected with a S/N ratio about 10 without any temperature stabilization of the sensing area.


Subject(s)
Artifacts , Optics and Photonics/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Surface Plasmon Resonance/methods
15.
Nano Lett ; 8(12): 4134-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367838

ABSTRACT

We demonstrate that, contrary to current understanding, the density of probe molecules is not responsible for the lack of hybridization in high density single-stranded DNA (ss-DNA) self-assembled monolayers (SAMs). To this end, we use nanografting to fabricate well packed ss-DNA nanopatches within a "carpet matrix" SAM of inert thiols on gold surfaces. The DNA surface density is varied by changing the "writing" parameters, for example, tip speed, and number of scan lines. Since ss-DNA is 50 times more flexible than ds-DNA, hybridization leads to a transition to a "standing up" phase. Therefore, accurate height and compressibility measurements of the nanopatches before and after hybridization allow reliable, sensitive, and label-free detection of hybridization. Side-by-side comparison of self-assembled and nanografted DNA-monolayers shows that the latter, while denser than the former, display higher hybridization efficiencies.


Subject(s)
DNA/chemistry , Nanostructures , Nucleic Acid Hybridization , Surface Properties
16.
Nano Lett ; 8(12): 4140-5, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367999

ABSTRACT

To understand better enzyme/DNA interactions and to design innovative detectors based on DNA nanoarrays, we need to study the effect of nanometric confinement on the biochemical activity of the DNA molecules. We focus on the study of the restriction enzyme reactions (DpnII) within DNA nanostructures on flat gold films by atomic force microscopy (AFM). Typically we work with a few patches of DNA self assembled monolayers (SAMs) that are hundred nm in size and are lithographically fabricated within alkylthiol SAMs by AFM nanografting. We start by nanografting a few patches of a single-stranded DNA (ssDNA) molecule of 44 base pairs (bps) with a 4 bps recognition sequence (specific for DpnII) in the middle. Afterwards, reaction-ready DNA nanopatches are obtained by hybridization with a complementary 44bps ssDNA sequence. The enzymatic reactions were carried out over nanopatches with different density. By carrying out AFM height measurements, we are able to show that the capability of the DpnII enzyme to reach and react at the recognition site is easily varied by controlling the DNA packing in the nanostructures. We have found strong evidence that inside our ordered DNA nanostructures the enzyme (that works as a dimer) can operate down to the limit in which the space between adjacent DNA molecules is equal to the size of the DNA/enzyme complex. Similar experiments were carried out with a DNA sequence without the recognition site, clearly finding that in that case the enzymatic reaction did not lead to digestion of the molecules. These findings suggest that it is possible to tune the efficiency of an enzymatic reaction on a surface by controlling the steric hindrance inside the DNA nanopatches without vary any further physical or chemical variable. These findings are opening the door to novel applications in both the fields of biosensing and fundamental biophysics.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA/chemistry , Nanostructures , Microscopy, Atomic Force
17.
J Phys Chem A ; 111(49): 12295-303, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-17929906

ABSTRACT

The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.


Subject(s)
Biotin/metabolism , Peroxidases/metabolism , Streptavidin/metabolism , Adsorption , Kinetics , Microscopy, Atomic Force , Surface Plasmon Resonance
18.
Eur J Med Chem ; 42(6): 873-9, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17303289

ABSTRACT

A series of 3- and 5-aryl-1,2,4-oxadiazole derivatives were prepared and tested for anticonvulsant activity in a variety of models. These 1,2,4-oxadiazoles exhibit considerable activity in both pentylenetetrazole (PTZ) and maximal electroshock seizure (MES) models. Compound 10 was protective in the PTZ model in rats with an oral ED(50) of 25.5mg/kg and in the MES model in rats with an oral ED(50) of 14.6mg/kg. Neurotoxicity (rotarod) was observed with an ED(50) of 335mg/kg. We found several oxadiazoles that acted as selective GABA potentiating compounds with no interaction to the benzodiazepine binding site.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Dose-Response Relationship, Drug , Male , Models, Molecular , Molecular Structure , Rats , Seizures/drug therapy , Structure-Activity Relationship
19.
Anal Chem ; 79(2): 702-9, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17222040

ABSTRACT

A new imaging technique for high-throughput surface plasmon resonance (SPR) measurements is described. It is the application of a CCD camera for simultaneous processing of two images at two different wavelengths provided by two laser diodes. The two lasers are brought to resonance by tuning of the angle of incidence so that the detection power and the dynamic range are optimized for the wavelength pair selected. Applying a special differential processing of the two images, SPR measurements can be performed near the shot noise limit taking into account the number of CCD pixels involved. It is shown that the detection limit of imaging methods can be improved significantly if the working point is set near to the reflection minimum instead of choosing the angle with the steepest slope of the reflection curve. The technique is demonstrated by simultaneous measurement of hybridization reactions of three different types of thiolated oligonucleotides in 30 small areas set by a commercial spotter. A noise level of 1.5 x 10(-6) refractive index units (RIU) was obtained for single, 500 x 500 microm2 reaction areas. The noise level was about 6 x 10(-7) RIU when five areas were taken into account. The present arrangement and the particular spotter applied would allow simultaneous measurements of up to 400 binding reactions with a noise level of about 1.5 x 10(-6) RIU.


Subject(s)
DNA/analysis , Nucleic Acid Hybridization/methods , Surface Plasmon Resonance/methods , Lasers
20.
Photochem Photobiol ; 82(5): 1385-90, 2006.
Article in English | MEDLINE | ID: mdl-16898857

ABSTRACT

To establish a semiartificial device for (bio-)hydrogen production utilizing photosynthetic water oxidation, we report on the immobilization of a Photosystem 2 on electrode surfaces. For this purpose, an isolated Photosystem 2 with a genetically introduced His tag from the cyanobacterium Thermosynechococcus elongatus was attached onto gold electrodes modified with thiolates bearing terminal Ni(II)-nitrilotriacetic acid groups. Surface enhanced infrared absorption spectroscopy showed the binding kinetics of Photosystem 2, whereas surface plasmon resonance measurements allowed the amount of protein adsorbed to be quantified. On the basis of these data, the surface coverage was calculated to be 0.29 pmol protein cm(-2), which is in agreement with the formation of a monomolecular film on the electrode surface. Upon illumination, the generation of a photocurrent was observed with current densities of up to 14 microA cm(-2) . This photocurrent is clearly dependent on light quality showing an action spectrum similar to an isolated Photosystem 2. The achieved current densities are equivalent to the highest reported oxygen evolution activities in solution under comparable conditions.


Subject(s)
Hydrogen/metabolism , Photosystem II Protein Complex/metabolism , Synechococcus/metabolism , Water/metabolism , Electrochemistry/methods , Electrodes , Kinetics , Light , Photochemistry , Photosystem II Protein Complex/radiation effects , Synechococcus/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...