Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 18(11): e0293322, 2023.
Article in English | MEDLINE | ID: mdl-37917746

ABSTRACT

Disparities for women and minorities in science, technology, engineering, and math (STEM) careers have continued even amidst mounting evidence for the superior performance of diverse workforces. In response, we launched the Diversity and Science Lecture series, a cross-institutional platform where junior life scientists present their research and comment on diversity, equity, and inclusion in STEM. We characterize speaker representation from 79 profiles and investigate topic noteworthiness via quantitative content analysis of talk transcripts. Nearly every speaker discussed interpersonal support, and three-fifths of speakers commented on race or ethnicity. Other topics, such as sexual and gender minority identity, were less frequently addressed but highly salient to the speakers who mentioned them. We found that significantly co-occurring topics reflected not only conceptual similarity, such as terms for racial identities, but also intersectional significance, such as identifying as a Latina/Hispanic woman or Asian immigrant, and interactions between concerns and identities, including the heightened value of friendship to the LGBTQ community, which we reproduce using transcripts from an independent seminar series. Our approach to scholar profiles and talk transcripts serves as an example for transmuting hundreds of hours of scholarly discourse into rich datasets that can power computational audits of speaker diversity and illuminate speakers' personal and professional priorities.


Subject(s)
Diversity, Equity, Inclusion , Ethnicity , Female , Humans , Minority Groups , Technology
2.
Nat Protoc ; 17(1): 3-14, 2022 01.
Article in English | MEDLINE | ID: mdl-34949863

ABSTRACT

Genetic elements that are inherited at super-Mendelian frequencies could be used in a 'gene drive' to spread an allele to high prevalence in a population with the goal of eliminating invasive species or disease vectors. We recently demonstrated that the gene conversion mechanism underlying a CRISPR-Cas9-mediated gene drive is feasible in mice. Although substantial technical hurdles remain, overcoming these could lead to strategies that might decrease the spread of rodent-borne Lyme disease or eliminate invasive populations of mice and rats that devastate island ecology. Perhaps more immediately achievable at moderate gene conversion efficiency, applications in a laboratory setting could produce complex genotypes that reduce the time and cost in both dollars and animal lives compared with Mendelian inheritance strategies. Here, we discuss what we have learned from early efforts to achieve CRISPR-Cas9-mediated gene conversion, potential for broader applications in the laboratory, current limitations, and plans for optimizing this potentially powerful technology.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Conversion/genetics , Gene Editing/methods , Animals , Mice , Mice, Transgenic/genetics , Rats , Rats, Transgenic/genetics
3.
PLoS Biol ; 19(12): e3001478, 2021 12.
Article in English | MEDLINE | ID: mdl-34941868

ABSTRACT

Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a "gene drive," to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an "insertion/deletion" (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of "super-mendelian" inheritance from both male and female mice.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Gene Conversion/genetics , Gene Editing/methods , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genetic Engineering/methods , Germ Cells/metabolism , Male , Meiosis/genetics , Mice , RNA, Guide, Kinetoplastida/genetics , Recombinational DNA Repair/genetics
4.
Nature ; 577(7792): E8, 2020 01.
Article in English | MEDLINE | ID: mdl-31911657

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Development ; 146(24)2019 12 16.
Article in English | MEDLINE | ID: mdl-31784460

ABSTRACT

Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.


Subject(s)
Cell Lineage/genetics , Multipotent Stem Cells/physiology , Neural Crest/cytology , Neural Stem Cells/physiology , Nuclear Proteins/physiology , Positive Transcriptional Elongation Factor B/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Body Patterning/genetics , Cell Differentiation/genetics , Cyclin-Dependent Kinase 9/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Multipotent Stem Cells/cytology , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Neural Crest/physiology , Neural Stem Cells/cytology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Positive Transcriptional Elongation Factor B/antagonists & inhibitors , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , Transcription Factors/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
6.
Nature ; 566(7742): 105-109, 2019 02.
Article in English | MEDLINE | ID: mdl-30675057

ABSTRACT

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR-Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity1-4. If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR-Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR-Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Conversion , Gene Drive Technology/methods , Germ-Line Mutation/genetics , Heterozygote , Homozygote , Alleles , Animals , Breeding , CRISPR-Associated Protein 9/genetics , Chromosomes, Mammalian/genetics , DNA Breaks, Double-Stranded , Disease Models, Animal , Embryo, Mammalian/enzymology , Embryo, Mammalian/metabolism , Female , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Transgenic , Monophenol Monooxygenase/genetics , RNA, Guide, Kinetoplastida/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...