Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(8): 086402, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457726

ABSTRACT

The discovery of the Hat, an aperiodic monotile, has revealed novel mathematical aspects of aperiodic tilings. However, the physics of particles propagating in such a setting remains unexplored. In this work we study spectral and transport properties of a tight-binding model defined on the Hat. We find that (i) the spectral function displays striking similarities to that of graphene, including sixfold symmetry and Dirac-like features; (ii) unlike graphene, the monotile spectral function is chiral, differing for its two enantiomers; (iii) the spectrum has a macroscopic number of degenerate states at zero energy; (iv) when the magnetic flux per plaquette (ϕ) is half of the flux quantum, zero modes are found localized around the reflected "anti-hats"; and (v) its Hofstadter spectrum is periodic in ϕ, unlike for other quasicrystals. Our work serves as a basis to study wave and electron propagation in possible experimental realizations of the Hat, which we suggest.

2.
Phys Rev Lett ; 130(18): 186702, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37204885

ABSTRACT

We show that a chiral spin liquid spontaneously emerges in partially amorphous, polycrystalline, or ion-irradiated Kitaev materials. In these systems, time-reversal symmetry is broken spontaneously due to a nonzero density of plaquettes with an odd number of edges n_{odd}. This mechanism opens a sizable gap, at small n_{odd} compatible with that of typical amorphous materials and polycrystals, and which can alternatively be induced by ion irradiation. We find that the gap is proportional to n_{odd}, saturating at n_{odd}∼40%. Using exact diagonalization, we find that the chiral spin liquid is approximately as stable to Heisenberg interactions as Kitaev's honeycomb spin-liquid model. Our results open up a significant number of noncrystalline systems where chiral spin liquids can emerge without external magnetic fields.

3.
ACS Appl Electron Mater ; 5(5): 2624-2637, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37250468

ABSTRACT

In recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features. Alternatively, topology may be stabilized by disorder, suggesting the tantalizing possibility of an amorphous variant of a topological metal, yet to be discovered. In this respect, understanding how microstructure and stoichiometry affect magnetotransport properties is of pivotal importance, particularly in case of low-dimensional CoSi thin films and devices. Here we comprehensively investigate the magnetotransport and magnetic properties of ≈25 nm Co1-xSix thin films grown on a MgO substrate with controlled film microstructure (amorphous vs textured) and chemical composition (0.40 < x < 0.60). The resistivity of Co1-xSix thin films is nearly insensitive to the film microstructure and displays a progressive evolution from metallic-like (dρxx/dT > 0) to semiconducting-like (dρxx/dT < 0) regimes of conduction upon increasing the silicon content. A variety of anomalies in the magnetotransport properties, comprising for instance signatures consistent with quantum localization and electron-electron interactions, anomalous Hall and Kondo effects, and the occurrence of magnetic exchange interactions, are attributable to the prominent influence of intrinsic structural and chemical disorder. Our systematic survey brings to attention the complexity and the challenges involved in the prospective exploitation of the topological chiral semimetal CoSi in nanoscale thin films and devices.

4.
Sci Adv ; 9(19): eadf7220, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37172096

ABSTRACT

Quantum Hall (QH) edge channels propagating along the periphery of two-dimensional (2D) electron gases under perpendicular magnetic field are a major paradigm in physics. However, groundbreaking experiments that could use them in graphene are hampered by the conjecture that QH edge channels undergo a reconstruction with additional nontopological upstream modes. By performing scanning tunneling spectroscopy up to the edge of a graphene flake on hexagonal boron nitride, we show that QH edge channels are confined to a few magnetic lengths at the crystal edges. This implies that they are ideal 1D chiral channels defined by boundary conditions of vanishing electronic wave functions at the crystal edges, hence free of electrostatic reconstruction. We further evidence a uniform charge carrier density at the edges, incompatible with the existence of upstream modes. This work has profound implications for electron and heat transport experiments in graphene-based systems and other 2D crystalline materials.

5.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36646794

ABSTRACT

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

6.
Nature ; 605(7908): 51-56, 2022 05.
Article in English | MEDLINE | ID: mdl-35508777

ABSTRACT

ABSTARCT: When electrons populate a flat band their kinetic energy becomes negligible, forcing them to organize in exotic many-body states to minimize their Coulomb energy1-5. The zeroth Landau level of graphene under a magnetic field is a particularly interesting strongly interacting flat band because interelectron interactions are predicted to induce a rich variety of broken-symmetry states with distinct topological and lattice-scale orders6-11. Evidence for these states stems mostly from indirect transport experiments that suggest that broken-symmetry states are tunable by boosting the Zeeman energy12 or by dielectric screening of the Coulomb interaction13. However, confirming the existence of these ground states requires a direct visualization of their lattice-scale orders14. Here we image three distinct broken-symmetry phases in graphene using scanning tunnelling spectroscopy. We explore the phase diagram by tuning the screening of the Coulomb interaction by a low- or high-dielectric-constant environment, and with a magnetic field. In the unscreened case, we find a Kekulé bond order, consistent with observations of an insulating state undergoing a magnetic-field driven Kosterlitz-Thouless transition15,16. Under dielectric screening, a sublattice-unpolarized ground state13 emerges at low magnetic fields, and transits to a charge-density-wave order with partial sublattice polarization at higher magnetic fields. The Kekulé and charge-density-wave orders furthermore coexist with additional, secondary lattice-scale orders that enrich the phase diagram beyond current theory predictions6-10. This screening-induced tunability of broken-symmetry orders may prove valuable to uncover correlated phases of matter in other quantum materials.

7.
Nat Mater ; 20(12): 1601-1614, 2021 12.
Article in English | MEDLINE | ID: mdl-34127824

ABSTRACT

For many materials, a precise knowledge of their dispersion spectra is insufficient to predict their ordered phases and physical responses. Instead, these materials are classified by the geometrical and topological properties of their wavefunctions. A key challenge is to identify and implement experiments that probe or control these quantum properties. In this Review, we describe recent progress in this direction, focusing on nonlinear electromagnetic responses that arise directly from quantum geometry and topology. We give an overview of the field by discussing theoretical ideas, experiments and the materials that drive them. We conclude by discussing how these techniques can be combined with device architectures to uncover, probe and ultimately control quantum phases with emergent topological and correlated properties.


Subject(s)
Electromagnetic Phenomena
8.
Proc Natl Acad Sci U S A ; 117(48): 30260-30265, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33208535

ABSTRACT

Amorphous solids remain outside of the classification and systematic discovery of new topological materials, partially due to the lack of realistic models that are analytically tractable. Here we introduce the topological Weaire-Thorpe class of models, which are defined on amorphous lattices with fixed coordination number, a realistic feature of covalently bonded amorphous solids. Their short-range properties allow us to analytically predict spectral gaps. Their symmetry under permutation of orbitals allows us to analytically compute topological phase diagrams, which determine quantized observables like circular dichroism, by introducing symmetry indicators in amorphous systems. These models and our procedures to define invariants are generalizable to higher coordination number and dimensions, opening a route toward a complete classification of amorphous topological states in real space using quasilocal properties.

9.
Proc Natl Acad Sci U S A ; 117(44): 27104-27110, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33077590

ABSTRACT

We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasiparticles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasilinear interband contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies, the optical response is governed by transitions between a previously unobserved fourfold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly, our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.

10.
Phys Rev Lett ; 123(24): 247401, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922878

ABSTRACT

The robust quantization of observables in units of universal constants is a hallmark of topological phases. We show that chiral higher order topological insulators (HOTIs), bulk insulators with chiral hinge states, present two unusual features related to quantization. First, we show that circular dichroism is quantized to an integer or zero depending on the orientation of the sample. This probe locates the hinge states, and can be used to distinguish different types of chiral HOTIs. Second, we find that the average of the local Chern marker over a single surface, an observable related to the surface Hall conductivity known to be quantized in the infinite slab geometry, is nonuniversal for a finite surface. This is due to a nonuniversal contribution of the hinge states, previously unaccounted for, that distinguishes surfaces of chiral HOTIs from Chern insulators. Our findings are relevant to establish higher order topology in systems such as the axion insulator candidate EuIn_{2}As_{2}, and cold atomic realizations.

11.
Phys Rev Lett ; 121(8): 086401, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192623

ABSTRACT

The experimental realization of the Harper-Hofstadter model in ultracold atomic gases has placed fractional states of matter in these systems within reach-a fractional Chern insulator state (FCI) is expected to emerge for sufficiently strong interactions when half-filling the lowest band. The experimental setups naturally allow us to probe the dynamics of this topological state; yet little is known about its out-of-equilibrium properties. We explore, using density matrix renormalization group simulations, the response of the FCI state to spatially localized perturbations. After confirming the static properties of the phase we show that the characteristic, gapless features are clearly visible in the edge dynamics. We find that a local edge perturbation in this model propagates chirally independent of the perturbation strength. This contrasts the behavior of single particle models with counterpropagating edge states, such as the noninteracting Harper-Hofstadter model, where the chirality is manifest only for weak perturbations. Additionally, our simulations show that there is inevitable density leakage from the first row of sites into the bulk, preventing a naive chiral Luttinger theory interpretation of the dynamics.

12.
Sci Adv ; 3(8): e1701207, 2017 08.
Article in English | MEDLINE | ID: mdl-28835930

ABSTRACT

We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic two-dimensional (2D) Chern insulator subjected to a circular time-periodic perturbation. Because of the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake; taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number (ν) of the populated band: This "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η0 = ν/ℏ2, where h = 2π ℏ is Planck's constant. Contrary to the integer quantum Hall effect, this quantized response is found to be nonlinear with respect to the strength of the driving field, and it explicitly involves interband transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the nonlinear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion rate measurements as a universal probe for topological order in quantum matter.

13.
Nat Commun ; 8: 15995, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28681840

ABSTRACT

The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

14.
Nature ; 547(7663): 324-327, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726829

ABSTRACT

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.

15.
Phys Rev Lett ; 117(25): 257601, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036206

ABSTRACT

The polarization of a material and its response to applied electric and magnetic fields are key solid-state properties with a long history in insulators, although a satisfactory theory required new concepts such as Berry-phase gauge fields. In metals, quantities such as static polarization and the magnetoelectric θ term cease to be well defined. In polar metals, there can be analogous dynamical current responses, which we study in a common theoretical framework. We find that current responses to dynamical strain in polar metals depend on both the first and second Chern forms, related to polarization and magnetoelectricity in insulators as well as the orbital magnetization on the Fermi surface. We provide realistic estimates that predict that the latter contribution will dominate, and we investigate the feasibility of experimental detection of this effect.

16.
Nat Commun ; 7: 11615, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27186980

ABSTRACT

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

17.
Phys Rev Lett ; 112(15): 156801, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24785064

ABSTRACT

We show theoretically that periodically driven systems with short range Hubbard interactions offer a feasible platform to experimentally realize fractional Chern insulator states. We exemplify the procedure for both the driven honeycomb and the square lattice, where we derive the effective steady state band structure of the driven system by using the Floquet theory and subsequently study the interacting system with exact numerical diagonalization. The fractional Chern insulator state equivalent to the 1/3 Laughlin state appears at 7/12 total filling (1/6 filling of the upper band). The state also features spontaneous ferromagnetism and is thus an example of the spontaneous breaking of a continuous symmetry along with a topological phase transition. We discuss light-driven graphene and shaken optical lattices as possible experimental systems that can realize such a state.

18.
Phys Rev Lett ; 112(5): 056804, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24580622

ABSTRACT

We theoretically predict that the Casimir force in vacuum between two Chern insulator plates can be repulsive (attractive) at long distances whenever the sign of the Chern numbers characterizing the two plates are opposite (equal). A unique feature of this system is that the sign of the force can be tuned simply by turning over one of the plates or alternatively by electrostatic doping. We calculate and take into account the full optical response of the plates and argue that such repulsion is a general phenomena for these systems as it relies on the quantized zero frequency Hall conductivity. We show that achieving repulsion is possible with thin films of Cr-doped (Bi,Sb)2Te3, that were recently discovered to be Chern insulators with quantized Hall conductivity.

19.
Phys Rev Lett ; 107(10): 106402, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21981516

ABSTRACT

We propose a simple method for obtaining time reversal symmetry (T) broken phases in simple lattice models based on enlarging the unit cell. As an example we study the honeycomb lattice with nearest neighbor hopping and a local nearest neighbor Coulomb interaction V. We show that when the unit cell is enlarged to host six atoms that permits Kekulé distortions, self-consistent currents spontaneously form creating nontrivial magnetic configurations with total zero flux at high electron densities. A very rich phase diagram is obtained within a variational mean field approach that includes metallic phases with broken time reversal symmetry (T). The predominant (T) breaking configuration is an anomalous Hall phase, a realization of a topological Fermi liquid.

20.
Phys Rev Lett ; 106(2): 020403, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21405206

ABSTRACT

In this Letter, we show that switching between repulsive and attractive Casimir forces by means of external tunable parameters could be realized with two topological insulator plates. We find two regimes where a repulsive (attractive) force is found at small (large) distances between the plates, canceling out at a critical distance. For a frequency range where the effective electromagnetic action is valid, this distance appears at length scales corresponding to 1 - ϵ(ω) ∼ (2/π)αθ.

SELECTION OF CITATIONS
SEARCH DETAIL
...